Physics 536-Assignment \#8-Due April $7^{\text {th }}$

1. Consider the following two current source circuits, in which $V_{C C}=10 \mathrm{~V}$ and $V_{E E}=-10 \mathrm{~V}$:

(a) Derive the relationship between the values of R_{1}, R_{2} and R_{E} that will produce a desired current I_{C} in the circuit on the left.
(b) Derive the relationship between the values of $R_{1}^{\prime}, R_{2}^{\prime}$ and R_{E}^{\prime} that will produce a desired current I_{C}^{\prime} on the right.
(c) What is the advantage of using the circuit on the left when a load applied to the current source changes at a high frequency?
(d) What is the advantage of using the circuit on the right when the current I_{C}^{\prime} is constant but the temperature of the circuit changes?
2. Determine the values of the resistors R_{1}, R_{2}, R_{3} and R_{4} that will produce the linear relationship between the input and output voltages:

$$
\begin{equation*}
V_{\text {out }}=a+b V_{\text {in }} \tag{1}
\end{equation*}
$$

in the following circuit:

As a constraint, suppose that the current used by the voltage divider between $V_{C C}$ and $V_{E E}$ specified to be I_{0}.
3. The relationship between the current, I, through the diode and the voltage drop, V, across it is

$$
\begin{equation*}
I=I_{0} e^{e V / k T} \tag{2}
\end{equation*}
$$

when $I \gg I_{0}$. Determine the relation between $V_{\text {out }}$ and $V_{\text {in }}$ in the following logarithmic amplifier op-amp configuration:

4. Determine the relation between $V_{\text {out }}$ and $V_{\text {in }}$ in the following exponential amplifier op-amp configuration:

5. Describe qualitatively how to construct an circuit that produces an output voltage that is proportional to the product of two input voltages. Sketch the circuit configuration that would achieve this, but do not explicitly calculate any component values.

