Physics 536-Assignment \#5-Due February 22 ${ }^{\text {th }}$

1. Suppose a transmission line of length ℓ with characteristic impedance Z_{0} was driven by a voltage source of the form $v_{i n}(t)=V e^{i \omega t}$ with a source impedance matching that of the transmission line.
(a) Show that the voltage measured at the source, $x=0$, is

$$
\begin{equation*}
v(0, t)=\frac{V e^{i \omega t}}{2}\left(1-\Gamma_{L} e^{-2 i \omega \ell / v}\right) \tag{1}
\end{equation*}
$$

in which we assume that $\sqrt{\left(R^{\prime}+i \omega L^{\prime}\right)\left(G^{\prime}+i \omega C^{\prime}\right)}=i \omega / v$.
(b) Show that the magnitude of the voltage measured at the source is

$$
\begin{equation*}
|V(0)|=\frac{V}{2} \sqrt{1-2 \Gamma_{L} \cos 2 \omega \ell / v+\Gamma_{L}^{2}} \tag{2}
\end{equation*}
$$

(c) The voltage standing wave ratio (VSWR) is defined as the ratio $V_{\max } / V_{\min }$ where $V_{\max }$ and $V_{\min }$ are the maximum and minimum amplitudes of the voltage measured at the source as the frequency ω is varied over a wide range. Show that

$$
\begin{equation*}
V S W R=\frac{1+\left|\Gamma_{L}\right|}{1-\left|\Gamma_{L}\right|} \tag{3}
\end{equation*}
$$

and show how a measurement of the VSWR can be used to determine the absolute value of the reflection coefficient, $\left|\Gamma_{L}\right|$, and two possible values for the termination impedance, Z_{L}.
2. The following oscilloscope trace shows the voltage measured at the source $(x=0)$ end of a transmission line, where the source impedance matches the 50Ω impedance of the transmission line. The input voltage is a pulse with an amplitude of 2 volts and a width of about 120 ns which is repeated every microsecond.

(a) How long does it take the pulse to reach the far end $(x=\ell)$ of the transmission line? Assuming $v=2 / 3 c$, what is the physical length of the cable?
(b) What is the impedance of the load at $x=\ell$?
3. The following oscilloscope trace shows the voltage measured at the source $(x=0)$ end of a transmission line, where the source impedance matches the 50Ω impedance of the transmission line. The input voltage is a step with an amplitude of 2 volts.

$$
1.00 \mathrm{~V} / \mathrm{div}
$$

$200 \mathrm{~ns} / \mathrm{div}$
(a) What is the electrical length of the cable (in nanoseconds) and, assuming $v=2 / 3 c$, what is its physical length?
(b) What is the impedance of the load at $x=\ell$?

