Physics 536-Assignment \#1

1. Printed circuit boards are often manufactured adhering a very thin layer of copper to a sheet of epoxy impregnated fiberglass and etching away the unwanted copper to leave behind traces that form the conductors in a circuit. The thickness of the copper cladding is specified in ounces per square foot.
(a) Calculate the thickness in mils and millimeters of $1-\mathrm{oz}, 2-\mathrm{oz}$ and $0.5-\mathrm{oz}$ copper.
(b) Calculate the resistance of a trace that is 1 inches long and 5 mils in diameter for 1 -oz, 2 -oz and $0.5-\mathrm{oz}$ copper at room temperature ($\sim 300 \mathrm{~K}$).
(c) What are the resistance of these traces if their temperature increases by $100^{\circ} \mathrm{C}$?
2. Calculate the currents, I_{1} and I_{2} that flow through the voltage sources V_{1} and V_{2}, respecively, in the circuit shown below:

Be sure to clearly identify the assumed direction of current flowing through each voltage source.
3. A non-ideal voltage source provides a voltage V when no load is attached. If a load of resistance R_{L} is connected to this voltage source and the voltage across R_{L} is now found to be V^{\prime}, calculate the impedance of the voltage source in terms of R_{L}, V and V^{\prime}.
4. In the following circuit, what values of resistors R_{1} and R_{2} will provide a voltage source, $V_{T T}$,, with a voltage of -2 V (with no load attached) and an impedance of 50Ω ?

5. Consider the following circuit which contains three loops:

(a) Assign currents I_{1}, I_{2} and I_{3} flowing clockwise through the three loops containing voltage sources V_{1}, V_{2} and V_{3}, respectively. Then write the 3×3 matrix equation that relate the currents, resistances and voltage sources. You do not need to solve this system of equations.
(b) Suppose the components in the circuit had the following values:

$$
\begin{aligned}
V_{1} & =5 \mathrm{~V} \\
V_{2} & =10 \mathrm{~V} \\
V_{3} & =5 \mathrm{~V} \\
R_{1} & =10 \Omega \\
R_{2} & =20 \Omega \\
R_{3} & =5 \Omega \\
R_{4} & =10 \Omega \\
R_{5} & =10 \Omega
\end{aligned}
$$

Following the example provided at
http://www.physics.purdue.edu/~jones105/phys536/spice.html write the SPICE netlist that describes this circuit using the node numbers indicated.

