Physics 422-Spring 2015 - Midterm Exam, March $12^{\text {th }}$

> Answer all questions in the exam booklets provided.
> There are 6 questions - please answer any four of them.
> Explain your reasoning clearly but concisely. (but it is not expected to be at the same level as the homework)

> Clearly indicate which work is to be graded.
> Each question is of equal weight.
> You can use one page of your own notes/formulas.

1. A heavy beam, with length L and mass M, pivots about a fixed axis at one end and bounces on a spring with spring constant k at the other end as shown:

(a) When in equilibrium, the beam is horizontal. Write the differential equation that describes the angle θ measured with respect to the equilibrium position with $+\theta$ in the direction shown on the figure. The moment of inertia of the beam about the fixed axis is $I=\frac{1}{3} M L^{2}$.
(b) What is the angular frequency, ω_{0}, of small oscillations about the equilibirum position?
2. One mass, M, is constrained to move only in the horizontal direction and is attached to a wall by a spring with spring constant k. A second mass, M, hangs from the first mass on a string of length ℓ as shown:

The top mass has displacement x_{1}, measured with respect to its equilibrium position, and the bottom mass has displacement x_{2}, measured with respect to the top mass.
(a) Write the equations of motion for $x_{1}(t)$ and $x_{2}(t)$. Remember that Newton's second law only applies in an inertial reference frame.
(b) Show that the angular frequencies of the normal modes of oscillation are

$$
\omega^{2}=\frac{2 g / \ell+\omega_{0}^{2} \pm \sqrt{4 g^{2} / \ell^{2}+\omega_{0}^{4}}}{2}
$$

where $\omega_{0}^{2}=k / M$.
3. Consider a string with tension T on which N beads with equal mass m and spacing ℓ are attached. If all the beads are motionless at $t=0$ then the motion of an arbitrary bead k can be described by a sum over normal modes of oscillation:

$$
y_{k}(t)=\sum_{n=1}^{N} a_{n} \sin \left(\frac{n k \pi}{N+1}\right) \cos \left(\omega_{n} t\right)
$$

where

$$
\omega_{n}=2 \omega_{0} \sin \left(\frac{n \pi}{2(N+1)}\right) .
$$

Find an expression for a_{n} that will solve the initial value problem where all masses are initially in their equilibrium position except for bead m, which is displaced by an amplitude A at $t=0$.
It may be useful to recall that

$$
\sum_{k=1}^{N} \sin \left(\frac{n k \pi}{N+1}\right) \sin \left(\frac{m k \pi}{N+1}\right)=\frac{N}{2} \delta_{n m}
$$

4. A string of length L is deformed into the shape shown below, where the step occurs in the center, and is released from rest:

If the general form of the solution can be written

$$
y(x, t)=\sum_{n} a_{n} \sin \left(\frac{n \pi x}{L}\right) \cos \left(\omega_{n} t\right)
$$

show that in order to satisfy the initial conditions, we must have $a_{n}=0$ whenever n is an odd integer.
5. The current $i(t)$ in a series RLC circuit must satisfy the equation:

$$
L \frac{d i}{d t}+i(t) R+\frac{1}{C}\left(Q_{0}+\int_{0}^{t} i(t) d t\right)=0
$$

where Q_{0} is the initial charge on the capacitor. Find an expression for R that will produce critical damping.
6. (a) An ideal voltage source is attached via a resistor to a coaxial cable of length L as shown:

The far end of the cable is an open circuit and the source and cable impedances are matched so that $R=Z_{0}$. If signals propagate in the cable with a speed v, what is the lowest frequency that will result in a maximum voltage, measured at point A?
(b) What would be the lowest frequency resulting in a maximum voltage measured at point A if the far end of the cable was shorted?

It may help to sketch the incident and reflected waves in the cable.

