Physics 422 - Spring 2015 - Assignment $\# 8$, Due April 29 ${ }^{\text {th }}$
 You can turn this in at room 144.

1. (Hecht, 9.10) White light falling on two long narrow slits emerges and is observed on a distant screen. If red light ($\lambda_{0}=780 \mathrm{~nm}$) in the firstorder fringe overlaps violet in the second-order fringe, what is the later's wavelength?
2. (Hecht, 9.21) The Fresnel birpism is used to obtain fringes from a point source that is placed 2 m from the screen, and the prism is midway between the source and the screen. Let the wavelength of the light be $\lambda_{0}=500 \mathrm{~nm}$ and the index of refraction of the glass be $n=1.5$. What is the prism angle, if the separation of the fringes is 0.5 mm ?
3. The resolving power of a dispersive prism can be expressed

$$
\mathcal{R}=\frac{\lambda}{\Delta \lambda}=B \frac{d n}{d \lambda}
$$

where B is the length of the base of the prism and $n(\lambda)$ is the wavelengthdependent index of refraction of the material from which the prism is made.
(a) Estimate the resolving power of a prism with $B=10 \mathrm{~cm}$ made of crystal quartz. Please reference where you found the graph of $n(\lambda)$ for cyrstal quartz.
(b) Compare this resolving power to what can be achieved using a FabreyPerot interferrometer. State the assumptions made when estimating \mathcal{R} in this case.
(c) Explain whether you could, or could not, use a prism to resolve the pair of lines in the sodium doublet?

