Physics 422-Spring 2015-Assignment \#7 Due Friday, April $17^{\text {th }}$

1. Natural light is shining upon the surface of water $(n=1.33)$.
(a) Calculate the relative intensity of reflected light at normal incidence.
(b) Calculate Brewster's angle, θ_{p}.
(c) Calculate the relative intensity of reflected light when natural light shines on the water with an angle of incidence of θ_{p}.
2. (Hecht, 8.48) The specific rotary power for sucrose dissolved in water at $20^{\circ} \mathrm{C}\left(\lambda_{0}=589.3 \mathrm{~nm}\right)$ is $+66.45^{\circ}$ per 10 cm of path traversed through a solution containing 1 g of active substance (sugar) per cm^{-3} of solution. Vertically polarized light enters one end of a 1 m tube containing $1000 \mathrm{~cm}^{-3}$ of solution, of which 10 g is sucrose. What will be the orientation of the polarization axis of the emerging light?
3. (Hecht, 8.70) An optical filter can be described by a Jones matrix

$$
\left[\begin{array}{cc}
\cos ^{2} \alpha & \cos \alpha \sin \alpha \\
\cos \alpha \sin \alpha & \sin ^{2} \alpha
\end{array}\right]
$$

(a) Obtain the form of the emerging beam when the incident light is plane polarized at angle θ to the horizontal.
(b) Deduce from the result of part (a) the nature of the filter. plane polarized at angle θ to the horizontal.
(c) Confirm your deduction above with at least one other test.

