Physics 422-Spring 2015-Assignment \#5

Due Wednesday, April $1^{\text {st }}$

1. Use Fermat's principle to derive the law of reflection,

$$
\sin \theta_{1}=\sin \theta_{2},
$$

using the geometry shown below and the requirement that the optical path length between points A and B be stationary with respect to x.

2. Use Fermat's principle to derive the law of refraction,

$$
n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2},
$$

using the geometry shown below and the requirement that the optical path length between points A and B be stationary with respect to x.

3. (a) Calculate the distance to the object focal point, f_{o}, and the image focal point f_{i} for a single spherical concave refracting surface with radius of curvature $R=-10 \mathrm{~cm}$, made of a material with index of refraction $n_{2}=1.5$, and with air $\left(n_{1}=1\right)$ on the object side.
(b) Calculate f_{o} and f_{i} for the case where the air is replaced with water ($n_{1}=1.33$).
4. Two positive thin lenses with focal lenghts f_{1} and f_{2} are placed a distance $d=f_{1}+f_{2}$ apart. If light of intensity I_{0} is incident on the system along the optical axis from very far away, $i e ., s_{o} \rightarrow \infty$, what is the intensity of the light emerging from the second lens?

