Physics 422 - Spring 2015-Assignment \#2, Due February $9^{\text {th }}$

1. (a) A charge q with mass m is placed on the x-axis, in between two fixed charges Q as shown:

If the charge is constrained to move only along the x-axis, calculate the frequency of small oscillations about the equilibrium position.
(b) Sketch the potential energy $V(x)$ of the charge q for $-d<x<d$.
(c) Sketch the phase diagram, $i e$. curves in the $\dot{x}-x$ plane, that describe the motion of the mass for both small amplitude oscillations $|x| \ll d$ and large amplitude oscillations $|x| \lesssim d$.
2. From the expression for the amplitude of a forced harmonic oscillator,

$$
A(\omega)=\frac{F_{0} / m}{\sqrt{\left(\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\left(\omega \omega_{0}\right)^{2} / Q^{2}\right.}}
$$

show that the maximum amplitude occurs at a frequency

$$
\omega_{m}=\omega_{0} \sqrt{1-\frac{1}{2 Q^{2}}}
$$

and that the maximum amplitude is

$$
A_{m}=\frac{F_{0}}{k} \frac{Q}{\sqrt{1-1 / 2 Q^{2}}}
$$

3. Consider a pendulum consisting of a mass m attached to a string of length ℓ. If the pendulum was initially in motion, but the amplitude of small oscillations is reduced by a factor of $1 / e$ in time T, calculate the value of γ and Q for this oscillator.
4. Suppose that the support from which the pendulum in Qustion 3 was hung is moved in the horizontal direction with a displacement given by

$$
x(t)=d \cos \omega t
$$

Calculate the maximum angle of steady state oscillations as a function of the driving frequency, ω.

