Physics 422 - Spring 2015 - Assignment #1, Due February 2^{nd}

1. Consider the polynomial

$$Ax^2 + Bx + C = 0.$$

- (a) What are the roots of the polynomial?
- (b) What conditions must A, B, and C satisfy for the roots to be real?
- 2. Show that the complex valued function

$$z(t) = ae^{i\alpha}e^{i\omega t} + be^{i\beta}e^{i\omega t}$$

can be written in the form

$$z(t) = re^{i(\omega t + \varphi)}$$

and find expressions for r and φ in terms of the real numbers a, b, α and β .

- **3.** Consider two springs with spring constants k_1 and k_2 .
- (a) Show that the effective spring constant, k_p , that would result if the springs were connected in parallel, is given by

$$k_p = k_1 + k_2.$$

(b) Show that the effective spring constant, k_s , that would result if the springs were connected in series, is given by

$$k_s = \left(\frac{1}{k_1} + \frac{1}{k_2}\right)^{-1}.$$

4. Consider an object made out of elastic material of length L that has a uniform elastic modulus, Y, and a cross sectional area given by the function $A(\ell)$, where $0 \le \ell \le L$. Find an expression for the spring constant of the object.

5. A mass, m, is attached to one end of a spring with spring constant k and equilibrium length ℓ . The other end of the spring moves with constant velocity so that its position X(t) at time t is given by

$$X(t) = \ell + vt.$$

Find an expression for the position of the mass as a function of time, x(t), if at time t=0 the mass is initially located at x(0)=0 and is initially at rest, $\dot{x}(0)=0$.