Physics 422 - Spring 2015 - Assignment \#1, Due February $2^{\text {nd }}$

1. Consider the polynomial

$$
A x^{2}+B x+C=0
$$

(a) What are the roots of the polynomial?
(b) What conditions must A, B, and C satisfy for the roots to be real?
2. Show that the complex valued function

$$
z(t)=a e^{i \alpha} e^{i \omega t}+b e^{i \beta} e^{i \omega t}
$$

can be written in the form

$$
z(t)=r e^{i(\omega t+\varphi)}
$$

and find expressions for r and φ in terms of the real numbers a, b, α and β.
3. Consider two springs with spring constants k_{1} and k_{2}.
(a) Show that the effective spring constant, k_{p}, that would result if the springs were connected in parallel, is given by

$$
k_{p}=k_{1}+k_{2} .
$$

(b) Show that the effective spring constant, k_{s}, that would result if the springs were connected in series, is given by

$$
k_{s}=\left(\frac{1}{k_{1}}+\frac{1}{k_{2}}\right)^{-1} .
$$

4. Consider an object made out of elastic material of length L that has a uniform elastic modulus, Y, and a cross sectional area given by the function $A(\ell)$, where $0 \leq \ell \leq L$. Find an expression for the spring constant of the object.
5. A mass, m, is attached to one end of a spring with spring constant k and equilibrium length ℓ. The other end of the spring moves with constant velocity so that its position $X(t)$ at time t is given by

$$
X(t)=\ell+v t
$$

Find an expression for the position of the mass as a function of time, $x(t)$, if at time $t=0$ the mass is initially located at $x(0)=0$ and is initially at rest, $\dot{x}(0)=0$.

