Physics 422 - Spring 2013 - Assignment \#6, Due April 14 ${ }^{\text {th }}$

1. (Hecht, 8.16) Two ideal linear sheet polarizers are arranged with respect to the vertical with their transmission axis at 10° and 60°, respectively. If a linearly polarized beam of light with its electric field at 40° enters the first polarizer, what fraction of its irradiance will emerge?
2. (Hecht, 8.32) A beam of natural light is incident on an air-glass interface $\left(n_{t i}=1.5\right)$ at 40°. Compute the degree of polarization of the reflected light.
3. (Hecht, 8.56) Show by direct calculation, using Mueller matrices, that a unit-irradiance beam of natural light passing through a linear polarizer with its transmission axis at $+45^{\circ}$ is converted into a \mathcal{P}-state at $+45^{\circ}$. Determine its relative irradiance and degree of polarization.
4. (Hecht, 8.58) (a) Confirm that thte matrix

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]
$$

will serve as a Mueller matrix for a quarter-wave plate with its fast axis at $+45^{\circ}$.
(b) What happens when light that is linearly polarized at 45° shines through it?
(c) What emerges when a horizontal \mathcal{P}-state enters the device?
5. (Hecht, 8.72) A liquid cell containing an optically active sugar solution has a Jones matrix given by

$$
\frac{1}{2 \sqrt{2}}\left[\begin{array}{cc}
1+\sqrt{3} & -1+\sqrt{3} \\
1-\sqrt{3} & 1+\sqrt{3}
\end{array}\right]
$$

(a) Determine the polarization of the emerging light if the incident beam is a horizaontal \mathcal{P}-state.
(b) Determine the polarization of the emerging light if the incident beam is a vertical \mathcal{P}-state.
(c) Determine the angle of rotation produced by the optically active material.

