Physics 422-Spring 2013-Assignment \#5, Due April $4^{\text {th }}$

1. (Hecht, 5.22) Determine the focal length in air of a thin spherical planarconvex lens having a radius of curvature of 50.0 mm and an index of refraction of 1.50 . What, if anything, would happen to the focal length if the lens were placed in a tank of water with $n=1.33$?
2. (Hecht, 5.13) A biconcave lens $\left(n_{l}=1.5\right)$ has radii of 20 cm and 10 cm and an axial thickness of 5 cm . Describe the image of an object 1 cm tall placed 8 cm from the first vertex. Use the thin-lens equation to see how far off it is in determining the final image location.
3. (Hecht, 5.6) Show that when using the paraxial approximation, the magnification produced by a single spherical interface between two continuous media is given by

$$
M_{T}=-\frac{n_{1} s_{i}}{n_{2} s_{o}}
$$

in which the object is placed in the medium with index of refraction n_{1}.
4. (Hecht, 5.40) Two positive lenses are to be used as a laserbeam expander. An axial $1.0-\mathrm{mm}$ diameter beam enters a short focal length positive lens, which is followed by a somewhat longer focal length positive lens from which it emerges with a diameter of 8.0 mm . Given that the first lens has a 50.0 mm focal length, determine the focal length of the second lens and the separation between the lenses. Draw a diagram.

