Physics 422 - Spring 2014-Assignment \#4, Due March 10 ${ }^{\text {th }}$

1. A string of length $L=8 \mathrm{~m}$, tension $T=4 \mathrm{~N}$ and linear mass density $\mu=1 \mathrm{~kg} / \mathrm{m}$ is initially at rest, but has an initial displacement described by the function

$$
f(x)= \begin{cases}0 & x<3 L / 8 \\ 1 & 3 L / 8<x<5 L / 8 \\ 0 & x>5 L / 8\end{cases}
$$

If the ends of the string are fixed, so that they cannot move, sketch the shape of the string at times $t_{1}=1 \mathrm{~s}, t_{2}=3 \mathrm{~s}$ and $t_{3}=4 \mathrm{~s}$.
2. A string of length L, which is fixed at both ends, has no initial displacement but has a transverse velocity described by the function

$$
f(x)=u x(x-L)
$$

where u is a constant. The general solution to the wave equation for the string,

$$
\frac{\partial^{2} y}{\partial x^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} y}{\partial t^{2}}
$$

can be written

$$
y(x, t)=\sum_{n} a_{n} \sin \left(\frac{n \pi x}{L}\right) \cos \left(\omega_{n} t+\alpha_{n}\right)
$$

where $\omega_{n}=n \pi v / L$ are the frequencies of the normal modes of oscillation. Find expressions for a_{n} and α_{n} that satisfy the initial conditions.
3. A pulse of length ℓ on a long string, with linear mass denisty μ, moves to the right with velocity v. At $x=0$ the string is tied to a long rope which has linear mass density 4μ. If the pulse encounters the discontinuity at time $t=0$, sketch the shape of the pulses on the string and the rope at time $t=3 \ell / v$.
4. A signal generator drives a voltage pulse with an amplitude of 1 V and width 10 ns on a coaxial cable of length $L=30 \mathrm{~m}$ which has characteristic impedance $Z=50 \Omega$ and a speed of signal propagation of $20 \mathrm{~cm} / \mathrm{ns}$. The other end of the cable is connected to an oscilloscope which graphs the voltage at that end of the cable as a function of time. Sketch the waveform that would be observed on the oscilloscope for the following combinations of the source impedance, Z_{s}, of the signal generator, and input impedance, Z_{o} of the oscilloscope:
(a) $Z_{s}=0 \Omega, Z_{o}=50 \Omega$
(b) $Z_{s}=0 \Omega, Z_{o}=1 \mathrm{M} \Omega$
(c) $Z_{s}=50 \Omega, Z_{o}=50 \Omega$
(d) $Z_{s}=50 \Omega, Z_{o}=1 \mathrm{M} \Omega$
(e) $Z_{s}=100 \Omega, Z_{o}=1 \mathrm{M} \Omega$

