Physics 422 - Spring 2013-Assignment \#1, Due January $24^{\text {th }}$

1. Show that the complex valued function

$$
z(t)=a e^{i \alpha} e^{i \omega t}+b e^{i \beta} e^{i \omega t}
$$

can be written in the form

$$
z(t)=r e^{i(\omega t+\varphi)}
$$

and find expressions for r and φ in terms of the real numbers a, b, α and β.
2. A mass is sliding along a frictionless surface with velcity v_{0} when at time $t=0$ it hits, and sticks to, a spring with spring constant k and uncompressed length L as shown:

(a) Draw a diagram that clearly illustrates your definition of the quantity $x(t)$, which represents the position of the mass at time $t>0$.
(b) Solve the equation of motion for the mass at times $t>0$.
3. Suppose a mass m is placed on top of a spring, with spring constant k, which has an uncompressed length L as shown:

(a) The weight of the mass compresses the spring. What will be the compressed length of the spring, z_{0}, when the mass is in equilibrium?
(b) Draw a free-body diagram showing the forces that act on the mass when the spring is compressed to a length z, where z is not nececessarily equal to z_{0} ?
(c) What is the net force on the mass when the spring is compressed to an arbitrary length z ?
(d) Using Newton's second law, derive the equation of motion for the mass in terms of z. Is the equation of motion of the form $\ddot{z}+\omega^{2} z=0$?
(e) Show that the equation of motion can be written in the form $\ddot{z}^{\prime}+\omega^{2} z^{\prime}=0$ by a suitable change of variables.
(f) If the mass is released from rest on the uncompressed spring at time $t=0$, find $z(t)$ for times $t>0$.

