Physics 422 - Spring 2013 - Assignment $\# 9$, Due April $8^{\text {th }}$

1. (Hecht, 5.30) Write an expression for the focal length $\left(f_{w}\right)$ of a thin lens immersed in water $\left(n_{w}=4 / 3\right)$ in terms of its focal length when in air $\left(f_{a}\right)$.
2. (Hecht, 5.25) A candle that is 6.00 cm tall is standing 10 cm from a thin concave lens whose focal length is -30 cm . Determine the location of the image and describe it in detail. Draw an appropriate ray diagram. Use a ruler!
3. (Hecht, 5.8) Locate the image of an object placed 1.2 m from the vertex of a gypsy's crystal ball, which has a 20 cm diameter and $n=1.5$. Make a sketch of the rays.
4. Starting from the Gaussian lens formula,

$$
\frac{1}{s_{o}}+\frac{1}{s_{i}}=\frac{1}{f}
$$

derive the Newtoniam form of the lens formula:

$$
x_{o} x_{i}=f^{2}
$$

where the variables are indicated on the following diagram:

