Physics 422 - Spring 2013-Assignment \#1, Due January 18 ${ }^{\text {th }}$

1. Consider the differential equation

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}+\omega^{2} x=0 \tag{1}
\end{equation*}
$$

If a general solution is written in the form of the infinite series,

$$
x(t)=\sum_{n=0}^{\infty} a_{n} t^{n}
$$

what constraints must the coefficients a_{n} satisfy if $x(t)$ is a solution of Equation 2? Hint: re-write the series in the form

$$
x(t)=\sum_{n=0,2,4, \ldots} a_{n} t^{n}+\sum_{n=1,3,5, \ldots} b_{n} t^{n},
$$

subsititue it into Equation 2, and equate terms with equal powers of n.
2. Verify that the differential equation

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}+\omega^{2} x=0 \tag{2}
\end{equation*}
$$

has as its solution

$$
x(t)=A \cos (\omega t)+B \sin (\omega t)
$$

where A and B are arbitrary constants. Show that this solution can be written in the form

$$
x(t)=C \cos (\omega t+\alpha)=C \operatorname{Re}\left[e^{i(\omega t+\alpha)}\right]
$$

and express C and α as functions of A and B.
3. Using Euler's formula

$$
\begin{equation*}
e^{i \theta}=\cos \theta+i \sin \theta \tag{3}
\end{equation*}
$$

show that we can write
(a) $\cos \theta=\left(e^{i \theta}+e^{-i \theta}\right) / 2$
(b) $\sin \theta=\left(e^{i \theta}-e^{-i \theta}\right) / 2 i$
(c) $\sin ^{2} \theta+\cos ^{2} \theta=1$
(d) $\cos ^{2} \theta-\sin ^{2} \theta=\cos 2 \theta$
(e) $2 \sin \theta \cos \theta=\sin 2 \theta$
4. Consider an object of mass m that is connected to two springs, with spring constants k_{1} and k_{2} as shown:

where x measures the displacement of the object from its equilibrium position. Determine the angular frequency, ω, with which the object will oscillate.

