Physics 310-Assignment \#2 - Due September $28^{\text {th }}$

1. My 1999 Corolla needs its wheels blanaced. The wheels have a diameter d, and the steering wheel vibrates with a maximum amplitude of $A_{\max }$ when I drive with a speed v.
(a) If the amplitude is reduced to $A_{\max } / \sqrt{2}$ when I drive at $v+\Delta v$, find an expression for the Q value of my car.
(b) Calculate the numerical value of Q when $d=15 \mathrm{in}, v=75 \mathrm{MPH}$, and $\Delta v=5 \mathrm{MPH}$.
2. Suppose the force on an object of mass m is a function of its position, x, and has the form

$$
F(x)=-\frac{a}{x^{2}}+\frac{b}{x^{3}}
$$

(a) Find an expression $V(x)$ that represents the potential energy function corresponding to this force.
(b) Calculate the separation, x_{0}, that minimizes the potential energy function.
(c) Express the potential energy function as a power series in $\left(x-x_{0}\right)$, explicitly showing terms up to order $\left(x-x_{0}\right)^{3}$.
(d) For small oscillations about x_{0}, calculate the effective spring constant, k that approximates this force.
3. (Fowles and Casssiday, problem 3.11)

A mass m moves along the x-axis subject to an attractive force given by $17 \beta^{2} m x / 2$ and a retarding force given by $3 \beta m \dot{x}$, where x is its distance from the origin and β is a constant. A driving force given by $m A \cos \omega t$, where A is a constant, is applied to the particle along the x-axis.
(a) What value of ω results in steady-state oscillations about the origin with maximum amplitude?
(b) What is the maximum amplitude?
4. (Fowles and Casssiday, problem 3.19)

A simple pendulum of length ℓ oscillates with an amplitude of 45°.
(a) What is the period?
(b) If this pendulum is used as a laboratory experiment to determine the value of g, find the error included in the use of the elementary formula $T_{0}=2 \pi \sqrt{\ell / g}$.
(c) Find the approximate amount of third-harmonic content in the oscillation of the pendulum.
5. A harmonic oscillator is described by the differential equation

$$
m \ddot{x}+c \dot{x}+k x=F(t) \Longrightarrow \ddot{x}+2 \gamma \dot{x}+\omega_{0}^{2} x=F(t) / m
$$

where $F(t)$ is a periodic force of the form:

which can be expressed:

$$
F(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos (n \omega t)
$$

where

$$
\omega=2 \pi / T
$$

and

$$
a_{n}=\frac{T}{2} \int_{-T / 2}^{T / 2} F(t) \cos (n \omega t)
$$

Calculate the amplitude of oscillations when $T=2 \pi \sqrt{m / k}, 4 \pi \sqrt{m / k}$ and $6 \pi \sqrt{m / k}$ for the case where $\gamma \ll \omega_{0}$.
6. Using the method of Laplace transforms, find the solution to an underdamped harmonic oscillator problem

$$
m \ddot{x}+c \dot{x}+k x=F(t)
$$

with initial conditions $x(0)=\dot{x}(0)=0$ where

$$
F(t)=\left\{\begin{array}{cc}
0 & \text { for } t<0 \\
F_{0} e^{-a t} & \text { for } t>0
\end{array}\right.
$$

(a) First, evaluate the Laplace transform of both sides of the differential equation, writing the Laplace transform of the solution, $X(s)=\mathcal{L}\{x(t)\}$.
(b) Solve the algebraic equation for $X(s)$.
(c) Use the identity:

$$
\mathcal{L}^{-1}\{f(s) g(s)\}=\int_{0}^{t} F(u) G(t-u) d u
$$

to evaluate $x(t)$.
7. Use the $4^{\text {th }}$ order Runge-Kutta integration formulas:

$$
\begin{aligned}
k_{1} & =x^{\prime}\left(t_{i}, x_{i}, y_{i}\right) \\
j_{1} & =y^{\prime}\left(t_{i}, x_{i}, y_{i}\right) \\
k_{2} & =x^{\prime}\left(t_{i}+\frac{1}{2} h, x_{i}+\frac{1}{2} h k_{1}, y_{i}+\frac{1}{2} h j_{1}\right) \\
j_{2} & =y^{\prime}\left(t_{i}+\frac{1}{2} h, x_{i}+\frac{1}{2} h k_{1}, y_{i}+\frac{1}{2} h j_{1}\right) \\
k_{3} & =x^{\prime}\left(t_{i}+\frac{1}{2} h, x_{i}+\frac{1}{2} h k_{2}, y_{i}+\frac{1}{2} h j_{2}\right) \\
j_{3} & =y^{\prime}\left(t_{i}+\frac{1}{2} h, x_{i}+\frac{1}{2} h k_{2}, y_{i}+\frac{1}{2} h j_{2}\right) \\
k_{4} & =x^{\prime}\left(t_{i}+h, x_{i}+h k_{3}, y_{i}+h j_{3}\right) \\
j_{4} & =y^{\prime}\left(t_{i}+h, x_{i}+h k_{3}, y_{i}+h j_{3}\right) \\
t_{i+1} & =t_{i}+h \\
x_{i+1} & =x_{i}+\frac{1}{6} h\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right) \\
y_{i+1} & =y_{i}+\frac{1}{6} h\left(j_{1}+2 j_{2}+2 j_{3}+j_{4}\right)
\end{aligned}
$$

to calculate the period of oscillation of a simple pendulum with $\ell=1 \mathrm{~m}, g=9.81 \mathrm{~m} / \mathrm{s}^{2}$ and initial displacements of $\theta_{\max }=2^{\circ}, 10^{\circ}, 45^{\circ}$ and 90°. To do this, use $h=10^{-4} \mathrm{sec}$ and find the time at which θ returns to $\theta_{\max }$ to within $\pm h$.
Compare the answers with the linear approximation, and the first order non-linear approximation (question 4).
Print out our program and hand it in with your assignment.

