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What have we learned from ABC fields?



This conference —

• Strive to study reconnection in context. 

• Onset problem is the million dollar question.



“Energy that can be dissipated at constant 
magnetic helicity” 

Free energy
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TABLE 1
Summary of runs

Grid resolution ✏ ↵0 See Figure

5123 1 16 1b
5122 1 16 2
5123 1

p
257 ⇡ 16 2

5122 0
p
257 ⇡ 16 2

30722 1 256 1a, 4, 5, 8
40962, 61442, 81922, 122882 1 256 12

163842 1 256 7, 12
2562, 5122, 10242, 20482, 40962 1 8, 16, 32, 64, 128 6

40962 1 32 3
122882 0

p
65641 ⇡ 256 2, 11, 10a

122882 1
p
65641 ⇡ 256 2, 11, 10b

10243 0
p
2305 ⇡ 48 11, 10c

10243 1
p
2305 ⇡ 48 11, 10d

163842 0
p
65641 ⇡ 256 11

163842 1
p
65641 ⇡ 256 11

7683 0
p
2305 ⇡ 48 11

7683 1
p
2305 ⇡ 48 11

Note. — Shown is a summary of the runs along with the figures
they are referenced by. Helical runs have ✏ = 1 and non-helical runs
have ✏ = 0. Those whose initial data is the 2D ABC field have ↵0
values that are exact integers, whereas randomized initial data have
↵0 values that are not exact integers.

vanishing inertia. This approximation is useful for
plasma environments in which the energy density of the
magnetic field greatly exceeds contributions from the
matter. Under such conditions, the flow of electrical cur-
rent responds rapidly to changes in E and B in order
to cancel the Lorentz force density ⇢E + J ⇥ B, where
⇢ = r · E is the net electrical charge per unit volume.
FFE thus admits an Ohm’s law that is a function of E
and B alone, (e.g. McKinney 2006a)

J =
B

B2

(B ·r⇥B�E ·r⇥E) +
E⇥B

B2

⇢, (3)

which may be coupled to the Maxwell equations

@tE= r⇥B� J (4)

@tB=�r⇥E

in order to yield a hyperbolic system of partial di↵erential
equations governing the evolution of the six components
of the electromagnetic field (Pfei↵er & MacFadyen 2013).
Evolution of ideal MHD systems in general is con-

strained by three quadratic invariants — the total en-
ergy U , the magnetic helicity H, and the cross helicity
W =

R
v ·Bd3x where v is the fluid velocity (Bekenstein

1987). As a limiting case of MHD, force-free electrody-
namics shares these invariants, with the exception of the
cross helicity, since FFE does not define the fluid veloc-
ity in the direction of B. Most relevant to our study
of magnetic relaxation is conservation of magnetic helic-
ity, which is a topological invariant of the magnetic field
alone, and thus functions in the same way for MHD as
it does for FFE. In both MHD and FFE, H is a robust
invariant, as it is generally found to be conserved even in
the presence of small non-ideal e↵ects (see e.g. Blackman
2014).

2.1. Energy

Since the Lorentz force density vanishes in FFE, no
E · J work is done on the charge carriers and the sys-
tem is formally energy conserving. Nevertheless, time-
dependent solutions may develop regions in which the
condition E < B is violated, i.e. no frame exists in which
the electric field vanishes. This indicates a breakdown of
the ideal force-free assumption, and the Ohm’s law given
by Equation 3 must be modified. Although non-ideal
force-free Ohm’s laws have been proposed in the litera-
ture (Gruzinov 2007; Li et al. 2012), it is still common-
place to evolve the ideal system until such a breakdown
occurs, and when it does to simply reduce the magnitude
of E to prevent E > B. The physical motivation for this
prescription, which we use here, is that energy is being
radiated away when charges are accelerated to short out
the electric field and restore E < B. The numerical evo-
lution scheme is described in more detail in Section 3.1,
and in Appendix A we confirm that it yields numerical
convergence of the energy dissipation rate.

2.2. Topology

Force-free electrodynamics shares the same magnetic
topological invariants as Newtonian and relativistic
MHD, the lowest order of which is the total magnetic he-
licity given by Equation 1. Its invariance can be seen as
stemming from the conservation of magnetic flux through
a closed field loop, which is why it is commonly re-
ferred to as characterizing the interlocking of the mag-
netic field. Although the helicity density A ·B depends
on the choice of gauge, its integral HV over any volume
V bounded by magnetic surfaces is well-defined, and also
invariant under ideal evolutions, such as Faraday’s law,
when E ·B = 0 (e.g. Brandenburg & Subramanian 2005),

@tHV = �2

Z

V
E ·Bd3x. (5)

Equation 5 implies that HV can still be conserved ap-
proximately in the presence of non-ideal processes, as
long as the volume in which they occur is small.
In principle, a domain that admits a partitioning by

magnetic surfaces has an independently conserved helic-
ity associated with each smaller volume. But in prac-
tice, three dimensional field geometries are too complex
for such a partitioning to be possible. This is what led
Taylor to conclude that relaxation is only constrained by
a single topological invariant — the total helicity. The
story is di↵erent in two dimensions since the magnetic
surfaces are far simpler; their cross-sections are nested
closed curves in the x � y plane, and the helicity en-
closed by each functions as an independently conserved
quantity for as long as that surface retains its identity.
But non-ideal e↵ects, however small, permit the surfaces
to merge with one another, erasing their identities and
shu✏ing up their conserved helicities. Nevertheless, in
two dimensions we can still construct a robust topologi-
cal invariant that is far stricter than the total helicity.
We recall that in the presence of z-translational sym-

metry, the in-plane magnetic field is tangent to the iso-
contours of the magnetic flux function Az. So each sub-
volume Vi( ) in which Az >  is associated with a
conserved helicity Hi( ) =

R
Vi( )

A · Bd3x. To what-
ever extent the helicities of such volumes remain additive
with respect to reconnections between their bounding
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(Cho 2005) and unbalanced (Cho & Lazarian 2014) situ-
ations. Even the study of mildly relativistic MHD turbu-
lence is in its infancy, having only been treated so far in
a handful of studies (Zhang et al. 2009; Inoue et al. 2010;
Zrake & MacFadyen 2011, 2013; Zrake 2014). There are,
by comparison, a great number of Newtonian MHD tur-
bulence studies (see e.g. Tobias et al. 2011, for a review)
treating all di↵erent circumstances, including turbulent
relaxation. Comparisons with them will be made wher-
ever possible.
One of the issues we will explore in this paper is the

applicability of the Taylor (1974) hypothesis to magnetic
relaxation in force-free electrodynamics. Taylor’s origi-
nal conjecture was that magnetic relaxation would uni-
versally settle in the lowest energy configuration allowed
by the conservation of total magnetic helicity

H =

Z
A ·Bd3x. (1)

These so-called Taylor states are linear force-free equi-
libria, having electric current density J that is not only
aligned with the magnetic field, but is also uniformly
proportional to it, i.e. they solve the constraint

r⇥B = ↵B (2)

for a global inverse length scale ↵. Such field config-
urations are monochromatic, all their magnetic energy
is concentrated around the spatial frequency ↵. The
converse of Taylor’s conjecture is that relaxation may,
in some circumstances, end in a more general force-free
equilibrium in which ↵ could vary from one magnetic
field line to another. In such non-linear equilibria, the
highest values of ↵ are associated with the smallest scale
coherent structures, which may be current layers or flux
tubes, and are associated with peaks in the intensity of
electrical current flow.
Counterexamples to Taylor’s conjecture do exist, but

those identified so far apply to settings in which gas pres-
sure plays a role. For example, hydromagnetic relaxed
states with non-uniform ↵ were reported by Amari & Lu-
ciani (2000) and Pontin et al. (2013) where the magnetic
field lines terminate on conducting plates, a boundary
condition that is motivated by the physics of the solar
corona. More general hydromagnetic equilibria have also
been found in simulations of stratified environments such
as stellar interiors, a setting that has been extensively ex-
plored by Braithwaite (2006, 2008, 2009) and Duez et al.
(2010). Gruzinov (2009) followed incompressible MHD
relaxation of a non-helical magnetic field in two dimen-
sions 1 and found that it did not decay toward the Taylor
minimum (total annihilation of the field in this case), but
instead was halted in an approximate equilibrium with
many current layers, beyond which further decay was
only made possible by slow resistive evolution.
Our study makes frequent use of the periodic short-

wavelength Taylor states as initial conditions. A Tay-
lor state of frequency ↵

0

and helicity H has an energy
↵
0

H/2, a fraction 1�↵
1

/↵
0

of which could be dissipated

1 Gruzinov’s two-dimensional simulations followed only the in-
plane magnetic field. In the rest of this paper, “two-dimensional”
means that translational symmetry is enforced along the z-axis,
but Bz need not vanish. This setting is sometimes referred to as
2.5D.

without changing the total helicity (where ↵
1

= 2⇡/L is
the lowest allowed frequency, although we will use L = 2⇡
so that ↵

1

= 1). This implies that their free energy
supply can be arbitrarily large, and so raises the ques-
tion of their mechanical stability. Very recently, East
et al. (2015) found that in FFE as well as in relativis-
tic MHD, generic examples of the 3D, periodic ↵

0

> 1
Taylor states are unstable to small, ideal perturbations,
with a growth rate that is proportional to the inverse
Alfvén time. Upon saturation of the linear instability,
decay enters a turbulent stage that lasts until the re-
maining energy ↵

1

H/2 resides at the lowest allowed fre-
quency ↵

1

. This behavior bears out the predictions of
Frisch et al. (1975) which were based on the prediction
that turbulence would generically shift magnetic helicity
toward large scales.
Conventionally, this so-called inverse cascade has been

thought to operate e�ciently only when the field is
strongly helical, a belief which has dramatic conse-
quences for large-scale dynamo theory (Blackman &
Field 2004), as well as the evolution of cosmic magnetic
fields since the early universe (Olesen 1997; Son 1999;
Banerjee & Jedamzik 2004). However, an e�cient in-
verse cascade was recently observed to occur even when
the field was fully non-helical, in both Newtonian (Bran-
denburg et al. 2015) and relativistic (Zrake 2014) MHD
settings. Although the magnetic energy eventually de-
cays toward zero, the relaxation evolves in a self-similar
manner, depositing energy in structures larger than the
coherence scale k�1

B , which increases over time until it at-
tains the system size. In this study we will show that all
settings of freely decaying turbulence in force-free elec-
trodynamics, 2D and 3D, helical and non-helical, exhibit
inverse cascading. The 2D and helical case is particularly
fast and nearly conservative; as time goes on, magnetic
energy is shifted toward ever-increasing scales while suf-
fering a diminishing rate of dissipative losses.
Our paper is organized as follows. We briefly describe

the theory of force-free electrodynamics and its invari-
ants in Section 2. There we also discuss the special case
of two dimensions, and define the additional topological
invariants that it imposes. We then outline the numer-
ical scheme that is used to solve the FFE equations in
Section 3, and describe our numerical implementation
of various diagnostics such as power spectra, character-
istic scales, and the helicity invariants. Our simulation
results, including the energy of relaxed magnetic con-
figurations, an analysis of coherent structures, spectral
energy distributions, and details of the inverse cascade,
are presented in Section 4. We discuss the implications
of these results for astrophysical gamma-ray sources in
Section 5, and also point out how our results might aid in
the interpretation of two-dimensional (including axisym-
metric) calculations. Appendix A contains some details
on the numerical convergence of our scheme. Through-
out our paper, we use units in which the speed of light
c = 1. The domain scale L is set to 2⇡ so that the small-
est spatial frequency is 1, and time is reported in units
of the light-crossing time L/c.

2. FORCE-FREE ELECTRODYNAMICS AND ITS
INVARIANTS

Force-free electrodynamics describes the flow of elec-
tromagnetic energy in a charge-supplied medium with



Plasma beta

Configuration 
energy

HL

LHLL

HH

(from Hui Li’s talk)



Conjecture —

“When a force-free equilibrium has free energy, 
it is linearly unstable.” 



• Force-free equilibrium, J || B 

•   

• Have free energy when alpha > 1
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will describe the numerical determination ofH( ) in Sec-
tion 3.3, and in Section 4.3 we confirm that it is conserved
by directly measuring it in our 2D simulations.
There is also the question of what should happen to

configurations in which H = 0 but H( ) 6= 0, since such
a configuration could not attain arbitrarily low energy
while respecting each of the invariants H( ). Although
behavior like this may be entirely possible, the particular
initial conditions used in this study (described in Sec-
tion 3.2) generally have values of |H( )| that are much
smaller than 2UB/↵1

, so we have not been able to ob-
serve it yet. Indeed, we will see in Section 4.2 that our
2D states with zero net helicity still decay toward very
small energy.

3. METHODS

We simulate magnetically dominated, relativistic tur-
bulence on a periodic domain of length L = 2⇡ in ei-
ther two or three dimensions, using solutions of the ideal
force-free electrodynamics equations, given by Equa-
tion 3 and Equation 4.

3.1. Numerical scheme

We evolve the FFE system using a fourth-order finite
di↵erence scheme. We use standard fourth-order di↵er-
ence operators to evaluate all the field gradients, and
standard fourth-order Runge-Kutta time-stepping to ad-
vance the solution in time.
The FFE system requires three vector constraints to

be maintained: no monopoles r · B = 0, perfect con-
ductivity E · B = 0, and the existence of a frame in
which E vanishes E < B. The first two constraints
are formally preserved by FFE, but can be violated nu-
merically at the level of truncation error. Our scheme
maintains the solenoidal constraint using the hyperbolic
divergence cleaning scheme proposed by Dedner et al.
(2002), and later used in FFE simulations (e.g. Palen-
zuela et al. 2010). This amounts to supplementing Fara-
day’s law with a magnetic monopole current JB = �r ,
where the scalar field  evolves according to the damped
wave equation @t = �r ·B�⌧�1 with ⌧ being a non-
physical time scale for quenching the magnetic monopole.
E ·B = 0 is maintained exactly by disregarding the part
of the truncation error that would give rise to a compo-
nent of E in the direction of B. Numerical noise intro-
duced by finite di↵erence operations can lead to unphys-
ical growth of modes whose wavelengths are comparable
to the numerical grid spacing. Our scheme suppresses
these unphysical modes using Kreiss-Oliger dissipation,
a form of low-pass filtering. Each of the procedures just
mentioned supplements the FFE equations with terms at
or below the level of the truncation error, so they do not
modify the formal convergence order of our numerical
scheme.
This numerical scheme was used in East et al. (2015),

and convergence results, as well as comparisons to rel-
ativistic MHD simulations and analytical methods can
be found in that reference. It has been implemented as
part of the Mara (Zrake & MacFadyen 2011) suite of rela-
tivistic turbulence codes, which has many run-time post-
processing capabilities that allow us to perform spectral
and statistical analysis of the solution at a high cadence
while minimizing strain on the host architecture’s filesys-
tem.

3.2. Initial conditions

We start our simulations with a monochromatic mag-
netic field, where all the power is at a single wavenumber
magnitude ↵

0

, and with a vanishing electric field. The
general expression for our initial conditions is

B(x)=
X

|k|=↵0

(↵
0

 

k

+ ✏ik⇥ 
k

)eik·x (7)

k ·  ̂
k

=0

 ̂

k

=  ̂⇤
�k

where the parameter ✏ is chosen to be either one or zero,
corresponding to helical or non-helical configurations, re-
spectively. Helical initial configurations where ↵

0

> 1 are
unstable equilibria (see Section 4.1), whereas the non-
helical configurations are out of equilibrium. Some of our
initial conditions are randomized, having  

k

= ê

k

ei�k

where ê

k

is a random unit vector in the plane orthogo-
nal to k and �

k

is a random phase. We also make use of
a special case of Equation 7 known as the “ABC” solu-
tion (Arnold 1965; Dombre et al. 1986). In general this
is given by

B

ABC(x) =

 
B

3

cos↵
0

z �B
2

sin↵
0

y
B

1

cos↵
0

x�B
3

sin↵
0

z
B

2

cos↵
0

y �B
1

sin↵
0

x

!
, (8)

which is highly ordered and fully helical, meaning that
B = ↵

0

A (in the Coulomb gauge). In this study we will
make frequent use of the case with B

1

= B
2

= 1 and
B

3

= 0, which we refer to as the 2D ABC configuration.
Our results are based on simulations having a range of

initial frequencies ↵
0

and numerical resolutions — which
we will refer to by the number of grid points in each lin-
ear dimension N . In general, the quality of our results
improves when we are able to simulate larger values of ↵

0

with more separation between the initial length scale and
the domain length scale. However, features (of size ↵�1

0

)
in our initial condition need to be resolved by a certain
number of grid points in order to obtain robust solutions.
In Appendix A we show that 32 cells per ↵�1

0

are su�-
cient to keep the error in the global helicity conservation
smaller than 1%. In 2D we will present simulations with
↵
0

as large as 256, with resolutions up to 163842. In 3D,
we will present simulations with ↵

0

as large as 48 and
resolution 10243.

3.3. Diagnostics

We define the power spectral density of the electric,
magnetic, and helicity fields, respectively, as

PE(ki)=
1

�ki

X

ki<|q|<ki+�ki

E

q

·E⇤
q

/2, (9)

PB(ki)=
1

�ki

X

ki<|q|<ki+�ki

B

q

·B⇤
q

/2,

PH(ki)=
1

�ki

X

ki<|q|<ki+�ki

A

q

·B⇤
q

where E
q

, B
q

, andA

q

are, respectively, the electric field,
magnetic field, and vector potential Fourier harmonics of
wavenumber q. We normalize the Fourier harmonics so

circumstances, including turbulent relaxation. Comparisons
with them will be made wherever possible.

One of the issues we will explore in this paper is the
applicability of the Taylor (1974) hypothesis to magnetic
relaxation in FFE. Taylorʼs original conjecture was that
magnetic relaxation would universally settle in the lowest-
energy configuration allowed by the conservation of total
magnetic helicity:

A BH d x. 13· ( )ò=

These so-called Taylor states are linear force-free equilibria,
having an electric current density J that is not only aligned
with the magnetic field, but is also uniformly proportional to it;
that is, they solve the constraint

B B 2( )a� ´ =

for a global inverse length scale α. Such field configurations
are monochromatic; all their magnetic energy is concentrated
around the spatial frequency α. The converse of Taylorʼs
conjecture is that relaxation may, in some circumstances, end in
a more general force-free equilibrium in which α could vary
from one magnetic field line to another. In such nonlinear
equilibria, the highest values of α are associated with the
smallest-scale coherent structures, which may be current layers
or flux tubes, and are associated with peaks in the intensity of
electrical current flow.

Counterexamples to Taylorʼs conjecture do exist, but those
identified so far apply to settings in which gas pressure plays a
role. For example, hydromagnetic relaxed states with nonuni-
form α were reported by Amari & Luciani (2000) and Pontin
et al. (2013) where the magnetic field lines terminate on
conducting plates, a boundary condition that is motivated by
the physics of the solar corona. More general hydromagnetic
equilibria have also been found in simulations of stratified
environments such as stellar interiors, a setting that has been
extensively explored by Braithwaite (2006, 2008, 2009) and
Duez et al. (2010). Gruzinov (2009) followed incompressible
MHD relaxation of a nonhelical magnetic field in two
dimensions1 and found that it did not decay toward the Taylor
minimum (with total annihilation of the field in this case), but
instead was halted in an approximate equilibrium with many
current layers, beyond which further decay was only made
possible by slow resistive evolution.

Our study makes frequent use of the periodic short-
wavelength Taylor states as initial conditions. A Taylor state
of frequency α0 and helicity H has an energy α0H/2, a fraction
1−α1/α0 of which could be dissipated without changing the
total helicity (where α1=2π/L is the lowest allowed
frequency, although we will use L=2π so that α1=1). This
implies that their free energy supply can be arbitrarily large and
so raises the question of their mechanical stability. Very
recently, East et al. (2015) found that in FFE, as well as in
relativistic MHD, generic examples of the three-dimensional
(3D), periodic α0>1 Taylor states are unstable to small, ideal
perturbations, with a growth rate that is proportional to the
inverse Alfvén time. Upon saturation of the linear instability,

decay enters a turbulent stage that lasts until the remaining
energy α1H/2 resides at the lowest allowed frequency α1. This
behavior bears out the predictions of Frisch et al. (1975), which
were based on the prediction that turbulence would generically
shift magnetic helicity toward large scales.
Conventionally, this so-called inverse cascade has been

thought to operate efficiently only when the field is strongly
helical, a belief that has dramatic consequences for large-scale
dynamo theory (Blackman & Field 2004), as well as the
evolution of cosmic magnetic fields since the early universe
(Olesen 1997; Son 1999; Banerjee & Jedamzik 2004).
However, an efficient inverse cascade was recently observed
to occur even when the field was fully nonhelical, in both
Newtonian (Brandenburg et al. 2015) and relativistic
(Zrake 2014) MHD settings. Although the magnetic energy
eventually decays toward zero, the relaxation evolves in a self-
similar manner, depositing energy in structures larger than the
coherence scale kB

1- , which increases over time until it attains
the system size. In this study, we will show that all settings of
freely decaying turbulence in FFE, 2D and 3D, helical and
nonhelical, exhibit inverse cascading. The 2D and helical case
is particularly fast and nearly conservative; as time goes on,
magnetic energy is shifted toward ever-increasing scales while
suffering a diminishing rate of dissipative losses.
Our paper is organized as follows. We briefly describe the

theory of FFE and its invariants in Section 2. There we also
discuss the special case of two dimensions and define the
additional topological invariants that it imposes. We then
outline the numerical scheme that is used to solve the FFE
equations in Section 3 and describe our numerical implementa-
tion of various diagnostics, such as power spectra, character-
istic scales, and the helicity invariants. Our simulation results,
including the energy of relaxed magnetic configurations, an
analysis of coherent structures, spectral energy distributions,
and details of the inverse cascade, are presented in Section 4.
We discuss the implications of these results for astrophysical
gamma-ray sources in Section 5 and also point out how our
results might aid in the interpretation of 2D (including
axisymmetric) calculations. The Appendix contains some
details on the numerical convergence of our scheme.
Throughout our paper, we use units in which the speed of
light c=1. The domain scale L is set to 2π so that the smallest
spatial frequency is 1, and time is reported in units of the light-
crossing time L/c.

2. FFE AND ITS INVARIANTS

FFE describes the flow of electromagnetic energy in a
charge-supplied medium with vanishing inertia. This approx-
imation is useful for plasma environments in which the energy
density of the magnetic field greatly exceeds contributions from
the matter. Under such conditions, the flow of electrical current
responds rapidly to changes in E and B in order to cancel the
Lorentz force density E J Br + ´ , where E·r = � is the net
electrical charge per unit volume. FFE thus admits an Ohmʼs
law that is a function of E and B alone (e.g.,
McKinney 2006a):

J
B

B B E E
E B

B B
, 3

2 2
( · · ) ( )r= � ´ - � ´ +

´
1 Gruzinovʼs two-dimensional (2D) simulations followed only the in-plane
magnetic field. In the rest of this paper, “2D” means that translational
symmetry is enforced along the z axis, but Bz need not vanish. This setting is
sometimes referred to as 2.5D.
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Spontaneous decay of periodic magnetostatic equilibria

William E. East, Jonathan Zrake, Yajie Yuan, and Roger D. Blandford
Kavli Institute for Particle Astrophysics and Cosmology, Stanford University,
SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA

In order to understand the conditions which lead a highly magnetized, relativistic plasma to
become unstable, and in such cases how the plasma evolves, we study a prototypical class of magne-
tostatic equilibria where the magnetic field satisfies ∇×B = αB, where α is spatially uniform, on
a periodic domain. Using numerical solutions we show that generic examples of such equilibria are
unstable to ideal modes (including incompressible ones) which are marked by exponential growth in
the linear phase. We characterize the unstable mode, showing how it can be understood in terms of
merging magnetic and current structures, and explicitly demonstrate its instability using the energy
principle. Following the nonlinear evolution of these solutions, we find that they rapidly develop
regions with relativistic velocities and electric fields of comparable magnitude to the magnetic field,
liberating magnetic energy on dynamical timescales and eventually settling into a configuration
with the largest allowable wavelength. These properties make such solutions a promising setting for
exploring the mechanisms behind extreme cosmic sources of gamma rays.

Introduction.—Magnetic stability is a fundamental
question in a range of fields from laboratory plasma
physics, where it influences the viability of fusion de-
vices [1]; to space physics, where it controls the struc-
ture of magnetic fields within stars and planets [2]. In
high-energy astrophysics, the spontaneous release of en-
ergy associated with transitions between magnetic equi-
librium states is of particular importance to understand-
ing the dramatic gamma-ray activities from pulsar wind
nebulae [3, 4], magnetars [5–8], relativistic jets associated
with active galactic nuclei [9–12], and gamma-ray bursts.
These diverse sources exhibit powerful gamma-ray flares
on timescales short compared with their light-crossing
times [7, 11, 12], and seem to require that electrons and
positrons be accelerated throughout extended regions, to
energies as high as several PeV [13, 14]. The most dra-
matic variations are likely produced in the relativistic
electromagnetic outflows away from the central engine
(neutron stars or black holes), and a mechanism is press-
ingly needed to explain the rapid, volumetric conversion
of magnetic energy into high energy particles and radia-
tion. Here, we consider whether such a process may be
triggered by magnetic instability in the outflow. These
outflows may initially accelerate, so that they cannot be
crossed by hydromagnetic waves in an outflow timescale.
However, they will eventually be decelerated when their
momentum flux decreases to that of the external medium,
bringing disconnected regions back into causal contact
where they are likely to be unstable[15].

To understand the conditions under which a plasma
becomes unstable, and to follow its subsequent nonlinear
evolution in an idealized setting, we focus on a model
class of force-free equilibria, which we find evolves in a
manner that is both surprising on formal grounds, and
highly suggestive of the behavior of the most dramatic
cosmic sources. Force-free solutions, where the Lorentz
force vanishes, are an excellent approximation for highly
conducting and strongly magnetized plasmas, where the

plasma inertia and pressure is subdominant to the mag-
netic field, and have been used extensively across differ-
ent fields. A particularly important class of force-free
equilibria that are conjectured to arise naturally from
magnetic relaxation are the so called Taylor states, which
satisfy the Beltrami property: ∇ × B = αB where α
is a constant [16]. These solutions have played an im-
portant role not only in laboratory plasma physics [17],
but also in solar physics [18–20], astrophysics [21], and
beyond [22]. In this work we focus on space-periodic
equilibria as a simple, computationally tractable setting
free of the effect of confining boundaries (as in extended
outflows). Though there is a rich literature studying such
solutions [16, 23–26], important facts regarding their sta-
bility have not been appreciated. Focusing on a prototyp-
ical example, the “ABC” solutions [27] (defined below),
in [25] it was claimed that such solutions are stable to in-
compressible perturbations (see also [26]). Here we show
that, in fact, generic periodic Beltrami magnetic fields
are linearly unstable, including to incompressible defor-
mations. The only exceptions we find are special cases
lacking magnetic curvature, and those in the fundamen-
tal mode or ground state, having the lowest magnetic
energy compatible with conservation of magnetic helicity
HM =

∫

A ·BdV (whereA is the magnetic vector poten-
tial). We find that in the nonlinear evolution, magnetic
energy is indeed liberated rapidly, giving rise to relativis-
tic velocities and electric fields of comparable magnitude
to the magnetic fields on dynamical timescales, and even-
tually allowing the system to relax to its ground state.
These solutions are therefore a simple, but promising set-
ting to explore the mechanisms underlying extreme cos-
mic sources of gamma rays.

In what follows, we present simulation results show-
ing the linear-regime instability of a range of magneto-
static equilibria, and then illustrate the properties of the
dominant unstable mode in some example cases, inde-
pendently confirming the growth rate using the energy
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ABSTRACT

Freely decaying, relativistic force-free turbulence is studied for the first time. We initiate the magnetic field at a
short wavelength and simulate its relaxation toward equilibrium on two- and three-dimensional periodic domains in
both helical and nonhelical settings. Force-free turbulent relaxation is found to exhibit an inverse cascade in all
settings and in three dimensions to have a magnetic energy spectrum consistent with the Kolmogorov 5/3 power
law. Three-dimensional relaxations also obey the Taylor hypothesis; they settle promptly into the lowest-energy
configuration allowed by conservation of the total magnetic helicity. However, in two dimensions, the relaxed state
is a force-free equilibrium whose energy greatly exceeds the Taylor minimum and that contains persistent force-
free current layers and isolated flux tubes. We explain this behavior in terms of additional topological invariants
that exist only in two dimensions, namely the helicity enclosed within each level surface of the magnetic potential
function. The speed and completeness of turbulent magnetic free-energy discharge could help account for rapidly
variable gamma-ray emission from the Crab Nebula, gamma-ray bursts, blazars, and radio galaxies.

Key words: gamma rays: general – magnetic fields – magnetic reconnection – magnetohydrodynamics (MHD) –
plasmas – turbulence

1. INTRODUCTION

The most extreme sources of high-energy astrophysical
radiation are widely believed to exist in magnetically
dominated, relativistic environments. Jets powered by super-
massive black holes, plasma winds driven by pulsars, and
gamma-ray bursts are prime examples. The violent inter-
mittency of gamma-ray production by these systems could be
taken as strong evidence that turbulence is critically linked to
their radiative output. And yet, the physics of magnetically
dominated, relativistic turbulence remains nearly unexplored.

The importance of understanding turbulence in this new
regime is underscored by the discovery of powerful gamma-ray
flares originating within the Crab Nebula (Abdo et al. 2011;
Tavani et al. 2011). Moreover, rapid time variability seems to
be ubiquitous among gamma-ray emitters; the blazars PKS
2155-304 (Aharonian et al. 2007), 1510-089 (Saito et al. 2013),
and 3C 279 (Hayashida et al. 2015), as well as radio galaxies
such as M87 (Aharonian et al. 2006) and IC 310 (Aleksić
et al. 2014), have each been observed to produce sporadic,
high-intensity outbursts of gamma radiation. Such dramatic
enhancements of synchrotron or inverse Compton emissivity
require a reservoir of free energy to spontaneously energize the
active regionʼs electron population. If that free energy resides
in magnetic fields, then its discharge could be triggered by
magnetic reconnection, the general picture of which has been
rendered in many different ways (Lazarian et al. 2003;
Lyutikov & Uzdensky 2003; Zhang & Yan 2011; McKinney
& Uzdensky 2012; Sironi & Spitkovsky 2014; Blandford
et al. 2015).

In this paper we intend to demonstrate that magnetic free-
energy discharge can proceed from field geometries that are far
more general than those typically considered in reconnection
models, and on a timescale that is not limited by the rate
with which microphysical or anomalous (e.g., Lazarian &
Vishniac 1999) resistivity can destroy magnetic flux. This
amounts to extending the historical problem of magnetic
relaxation (e.g., Chandrasekhar & Fermi 1953) to relativistic,
magnetically dominated conditions. We focus on only a few of

the many aspects of this topic that could be studied. Briefly,
they are (1) the rate and completeness of magnetic free-energy
discharge in various topological settings, (2) a characterization
of persistent nonlinear structures, and (3) the spectral energy
distribution of freely decaying, relativistic force-free turbu-
lence. To be most relevant for astrophysical gamma-ray emission,
we are interested in regions far from any solid boundaries that
could anchor the magnetic field (so periodic domains are
appropriate) and where the plasma is nearly perfectly conducting,
inviscid, and magnetically dominated—conditions that are the
domain of force-free electrodynamics (FFE) theory.
FFE forms the basis for historical theories of pulsar

magnetospheres (Goldreich & Julian 1969; Spitkovsky 2006)
and angular momentum extraction from black holes (Blandford
& Znajek 1977) and continues to be a widely used description
for studying these highly relativistic settings (Palenzuela
et al. 2010; Gralla et al. 2015; Yang et al. 2015). It can be
derived from relativistic magnetohydrodynamics (MHD) when
the electromagnetic contribution to the stress-energy tensor
greatly exceeds contributions from matter, and hence it
captures the essential nonlinear dynamics of relativistic MHD
for the regime of interest. It also admits a numerical approach
that is more robust and efficient than relativistic MHD solution
schemes.
Turbulence in FFE has only been considered in a few

previous studies. The theory of Alfvén wave turbulence in the
presence of a strong guide field, originally formulated for
Newtonian MHD by Goldreich & Sridhar (1995), has been
extended to the magnetically dominated, relativistic regime by
Thompson & Blaes (1998). Alfvén wave turbulence has since
been studied numerically in both the momentum balanced
(Cho 2005) and unbalanced (Cho & Lazarian 2014) situations.
Even the study of mildly relativistic MHD turbulence is in its
infancy, having only been treated so far in a handful of
studies (Zhang et al. 2009; Inoue et al. 2011; Zrake &
MacFadyen 2011, 2013; Zrake 2014). There are, by compar-
ison, a great number of Newtonian MHD turbulence studies
(see, e.g., Tobias et al. 2011, for a review) treating all different
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E ·B = 0 is maintained exactly by disregarding the part
of the truncation error that would give rise to a compo-
nent of E in the direction of B. Numerical noise intro-
duced by finite di↵erence operations can lead to unphys-
ical growth of modes whose wavelengths are comparable
to the numerical grid spacing. Our scheme suppresses
these unphysical modes using Kreiss-Oliger dissipation,
a form of low-pass filtering. Each of the procedures just
mentioned supplements the FFE equations with terms at
or below the level of the truncation error, so they do not
modify the formal convergence order of our numerical
scheme.
This numerical scheme was used in East et al. (2015),

and convergence results, as well as comparisons to rel-
ativistic MHD simulations and analytical methods can
be found in that reference. It has been implemented as
part of the Mara (Zrake & MacFadyen 2011) suite of rela-
tivistic turbulence codes, which has many run-time post-
processing capabilities that allow us to perform spectral
and statistical analysis of the solution at a high cadence
while minimizing strain on the host architecture’s filesys-
tem.

3.2. Initial conditions

We start our simulations with a monochromatic mag-
netic field, where all the power is at a single wavenumber
magnitude ↵

0

, and with a vanishing electric field. The
general expression for our initial conditions is

B(x)=
X

|k|=↵0

(↵
0

 

k

+ ✏ik⇥ 
k

)eik·x (7)

k ·  ̂
k

=0

 ̂

k

=  ̂⇤
�k

where the parameter ✏ is chosen to be either one or zero,
corresponding to helical or non-helical configurations, re-
spectively. Helical initial configurations where ↵

0

> 1 are
unstable equilibria (see Section 4.1), whereas the non-
helical configurations are out of equilibrium. Some of our
initial conditions are randomized, having  

k

= ê

k

ei�k

where ê

k

is a random unit vector in the plane orthogo-
nal to k and �

k

is a random phase. We also make use of
a special case of Equation 7 known as the “ABC” solu-
tion (Arnold 1965; Dombre et al. 1986). In general this
is given by

B

ABC(x) =

 
B

3

cos↵
0

z �B
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sin↵
0

y
B
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cos↵
0

x�B
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sin↵
0

z
B

2

cos↵
0

y �B
1

sin↵
0

x

!
, (8)

which is highly ordered and fully helical, meaning that
B = ↵

0

A (in the Coulomb gauge). In this study we will
make frequent use of the case with B

1

= B
2

= 1 and
B

3

= 0, which we refer to as the 2D ABC configuration.
Our results are based on simulations having a range of

initial frequencies ↵
0

and numerical resolutions — which
we will refer to by the number of grid points in each lin-
ear dimension N . In general, the quality of our results
improves when we are able to simulate larger values of ↵

0

with more separation between the initial length scale and
the domain length scale. However, features (of size ↵�1

0

)
in our initial condition need to be resolved by a certain
number of grid points in order to obtain robust solutions.

In Appendix A we show that 32 cells per ↵�1

0

are su�-
cient to keep the error in the global helicity conservation
smaller than 1%. In 2D we will present simulations with
↵
0

as large as 256, with resolutions up to 163842. In 3D,
we will present simulations with ↵

0

as large as 48 and
resolution 10243.

3.3. Diagnostics

We define the power spectral density of the electric,
magnetic, and helicity fields, respectively, as

PE(ki)=
1

�ki

X

ki<|q|<ki+�ki

E

q

·E⇤
q

/2, (9)

PB(ki)=
1

�ki

X

ki<|q|<ki+�ki

B

q

·B⇤
q

/2,

PH(ki)=
1

�ki

X

ki<|q|<ki+�ki

A

q

·B⇤
q

where E
q

, B
q

, andA

q

are, respectively, the electric field,
magnetic field, and vector potential Fourier harmonics of
wavenumber q. We normalize the Fourier harmonics so
that the volume integrated electric and magnetic field
energies UE and UB , and the magnetic helicity H are
given by

UE =
X

i

PE(ki)�ki,

UB =
X

i

PB(ki)�ki,

H =
X

i

PH(ki)�ki.

We also define the characteristic frequency of each field
kE , kB , and kH as

kX =

P
i PX(ki)ki�kiP
i PX(ki)�ki

(10)

where X is one of E, B, or H. The most probable
wavenumber, where PX(k) is maximal, is denoted by k̃X .
In two dimensions, we track the “helicity mass” func-

tion discussed in Section 2.2,

H( ) =

Z
⇥(Az(x)�  )A ·Bd3x, (11)

where ⇥ is the Heavyside step function. In practice,
this diagnostic is more easily computed as the “helicity
density” function dH/d , which we calculate by binning
the lattice points according to their value of Az, and
assigning the weight A · B. We also create the volume
distribution dV/d by binning points according to Az

with uniform weights, and the helicity distribution over
volume dH/dV = dH

d /
dV
d .

4. RESULTS

Figure 1 shows the evolution of both two and three
dimensional freely decaying force-free magnetic turbu-
lence. Both of these calculations are initiated in the
2D ABC state, but the one on top takes place on a
two-dimensional domain where translational symmetry
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We show the direction of scale-wise energy transfer in unforced turbulent media is dictated by
the type of instability a↵ecting the system’s base helical structures, more so than by its net helicity
charge. In magnetized plasma, the base structures are helical flux tubes which are unstable to
pairwise coalescence. Even when net magnetic helicity is zero, half of the coalescence episodes
occur between parallel (as opposed to anti-parallel) flux tubes. This picture yields a family of
self-similar solutions in which the integral scale of relaxing magnetized plasma grows with the 2/5
power of time when the system is non-helical, and the 2/3 power of time when maximally helical,
in quantitative agreement with recent numerical findings. It also predicts no such behavior to occur
in the analogous three dimensional fluid mechanical relaxation, because helical vortex tubes do
not coalesce, but disrupt internally by the Kelvin-Helmholtz e↵ect. We present direct numerical
simulations of representative magnetized and unmagnetized systems which support this picture.

Introduction. It was recently discovered that freely de-
caying turbulence in magnetohydrodynamics (MHD) ex-
hibits energy transfer toward larger scales even when net
magnetic helicity is zero [1–3]. Numerical experiments of
conducting fluid initiated at rest with a monochromatic
non-helical magnetic field exhibit self-similar decay of the
magnetic energy EM / t�a and associated growth of the
eddy scale � / tb where a, b > 0. This phenomenon was
seen as a surprise, for the reason that non-zero magnetic
helicity charge is conventionally taken as a necessary con-
dition for long wavelength structure to arise during three
dimensional MHD relaxation. While indeed the energy of
the asymptotic equilibrium state is determined uniquely
by the magnetic helicity invariant, magnetized plasma re-
laxes to that state in a heirarchical fashion. The primary
assertion of this Letter is that such behavior occurs in
MHD because its energy bearing coherent structures are
unstable to pairwise coalescence. This correctly predicts
that relaxation is heirarchical only when the system is
magnetized. In Section 1, we present a numerical anal-
ysis contrasting the instability of stationary kinetic flow
with analagous magnetostatic equilibria. In Section 2 we
develop a heirarchical relaxation model and in Section 3
we confirm its predictions.

Inquiry on this process is broadly motivated within the
astrophysical sciences, being relevant to any plasma sys-
tem whose magnetic free energy is born at small scales.
Such may be the case for the cosmological magnetoge-
nesis [4, 5], for shock wave propagation in collisionless
plasma [6, 7], and for dissipation of AC power in the
solar [8] and pulsar [9] winds.

Equations. Incompressible MHD describes advection
and di↵usion of the vorticity ! = r ⇥ v and magnetic
field b = r⇥ a,

@t! = r⇥ (v ⇥ !) + ⌫r2! (1)

@tb = r⇥ (v ⇥ b) + ⌘r2b. (2)

In the inviscid limit (⌫ = ⌘ = 0), such transport preserves
linkages of the vorticity (when b = 0) and magnetic field

lines, as expressed by the kinetic and magnetic helicity
invariants HK = hv · !i [10] and HM = ha · bi [11].
A key observation is that these quantities have di↵erent
dimensions; if energy concentrates around wavenumber
k0, then |HM | . k�1

0 EM whereas |HK | . k0EK . It fol-
lows that under helicity-constrained evolution, energies
EM = hb2/2i and EK = hv2/2i are minimized by con-
centrating around the container and viscous scales re-
spectively. It might then be anticipated that helical flux
tubes (force-free equilibria j ⇥ b = 0) with parallel elec-
trical current would have positive binding energy and be
unstable to pairwise coalsecence. Meanwhile, helical vor-
tex tubes (! ⇥ v = 0) would reduce their energy if split
into two smaller ones. The tendency for magnetic helic-
ity to shift toward large scales [12] is corollary with its
being a robust invariant. It is also premise for the Taylor
process [13] in which relaxing magnetized plasma comes
to rest in the longest wavelength force-free equilibrium
allowed by the container and preservation of HM .

Long wavelength structure emerging in the fully re-
laxed state, when coerced by the slower decay of one ideal
invariant relative to another, exemplifies selective decay
processes [14]. Magnetized fluid evolving with zero net
helicity is not required by that principle to exhibit any
such self-organization of its asymptotic state. Neverthe-
less, evolution prior to attaining equilibrium might still
develop structure over increasing scale. Our goal here is
to determine a necessary and su�cient condition for that
to be the case.

Cascade model. We envision that relaxation proceeds
over a sequence of stages during which the energy bearing
coherent structures (flux tubes) undergo pairwise coales-
cence. Each pair of merging flux tubes has parallel flow of
electrical current, but may have parallel or anti-parallel
magnetic flux. If q gives the ratio of right-polarized flux
tubes, then a fraction f = 2q(1� q) of the pairs are anti-
parallel (having opposite helicity charge). Upon merging,
those pairs annihilate and dissipate their energy. Merg-
ing conserves helicity charge and magnetic flux (and thus

Navier-Stokes
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2D
uz



2D
∆uz



3D
uz



On the role of helicity in self-similar turbulent relaxation

Jonathan Zrake
Kavli Institute for Particle Astrophysics and Cosmology, Stanford University,

SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA

We show the direction of scale-wise energy transfer in unforced turbulent media is dictated by
the type of instability a↵ecting the system’s base helical structures, and not by its net helicity
charge. In magnetized plasma, the base structures are helical flux tubes which are unstable to
pairwise coalescence. Even when net magnetic helicity is zero, half of the coalescence episodes occur
between parallel (as opposed to anti-parallel) flux tubes. This picture yields a family of self-similar
solutions in which the integral scale of relaxing magnetized plasma grows with the 2/5 power of time
when the system is non-helical, and the 2/3 power of time when maximally helical, in quantitative
agreement with numerical simulations. It also predicts no such behavior to occur in the analogous
three dimensional fluid mechanical relaxation, because helical vortex tubes do not coalesce, but
disrupt internally by the Kelvin-Helmholtz e↵ect.

Introduction. It was recently discovered that freely de-
caying turbulence in magnetohydrodynamics (MHD) ex-
hibits energy transfer toward larger scales even when net
magnetic helicity HM is zero [1–3]. Numerical experi-
ments of conducting fluid initiated at rest and embedding
a monochromatic non-helical magnetic field experience
self-similar decay of the magnetic energy EM / t�a and
associated growth of the eddy scale � / tb where a, b > 0.
This phenomenon was seen as a surprise, for the reason
that non-zero magnetic helicity charge is conventionally
taken as a necessary condition for long wavelength struc-
ture to arise during three dimensional MHD relaxation.
While indeed the asymptotic equilibrium state has an en-
ergy that is determined uniquely by the magnetic helicity
invariant, relaxation toward that state proceeds heirar-
chically over steadily increasing scale for any value of
HM . The primary assertion of this Letter is that such
behavior occurs in MHD because its energy bearing co-
herent structures are unstable to pairwise coalescence.
This correctly predicts that relaxation is heirarchical only
when the system is magnetized. In Section 1, we present
a numerical analysis contrasting the instability of station-
ary kinetic flow with analogous magnetostatic equilibria.
In Section 2 we develop a heirarchical relaxation model
and in Section 3 we confirm its predictions.

Inquiry on this process is broadly motivated within the
astrophysical sciences, being relevant to any plasma sys-
tem whose magnetic free energy is born at small scales.
Such may be the case for the cosmological magnetoge-
nesis [4, 5], for shock wave propagation in collisionless
plasma [6, 7], and for dissipation of AC power in the
solar [8] and pulsar [9] winds.

Equations. Incompressible MHD describes advection
and di↵usion of the vorticity ! = r ⇥ v and magnetic
field b = r⇥ a,

@t! = r⇥ (j ⇥ b+ v ⇥ !) + ⌫r2! (1)

@tb = r⇥ (v ⇥ b) + ⌘r2b. (2)

In the inviscid limit (⌫ = ⌘ = 0), such transport preserves
linkages of the vorticity (when b = 0) and magnetic field

lines, as expressed by the kinetic and magnetic helicity
invariants HK = hv · !i [10] and HM = ha · bi [11].
A key observation is that these quantities have di↵erent
dimensions; if energy concentrates around wavenumber
k0, then |HM | . k�1

0 EM whereas |HK | . k0EK . It fol-
lows that under helicity-constrained evolution, energies
EM = hb2/2i and EK = hv2/2i are minimized by con-
centrating around the container and viscous scales re-
spectively. It might then be anticipated that helical flux
tubes (force-free equilibria j ⇥ b = 0) with parallel elec-
trical current would have positive binding energy and be
unstable to pairwise coalsecence. Meanwhile, helical vor-
tex tubes (! ⇥ v = 0) would reduce their energy if split
into two smaller ones. The tendency for magnetic helic-
ity to shift toward large scales [12] is corollary with its
being a robust invariant. It is also premise for the Taylor
process [13] in which relaxing magnetized plasma comes
to rest in the longest wavelength force-free equilibrium
allowed by the container and preservation of HM .

Long wavelength structure emerging in the fully re-
laxed state, when coerced by the slower decay of one ideal
invariant relative to another, exemplifies selective decay
processes [14]. Magnetized fluid evolving with zero net
helicity is not required by that principle to exhibit any
such self-organization of its asymptotic state. Neverthe-
less, evolution prior to attaining equilibrium might still
develop structure over increasing scale. Our goal here is
to determine a necessary and su�cient condition for that
to be the case.

Cascade model. We envision that relaxation proceeds
over a sequence of stages during which the energy bearing
coherent structures (flux tubes) undergo pairwise coales-
cence. Each pair of merging flux tubes has parallel flow of
electrical current, but may have parallel or anti-parallel
magnetic flux. If q gives the ratio of right-polarized flux
tubes, then a fraction f = 2q(1� q) of the pairs are anti-
parallel (having opposite helicity charge). Upon merging,
those pairs annihilate and dissipate their energy. Merg-
ing conserves helicity charge and magnetic flux (and thus
cross sectional area) but the binding energy is dissipated
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Introduction. It was recently discovered that freely de-
caying turbulence in magnetohydrodynamics (MHD) ex-
hibits energy transfer toward larger scales even when net
magnetic helicity HM is zero [1–3]. Numerical experi-
ments of conducting fluid initiated at rest and embedding
a monochromatic non-helical magnetic field experience
self-similar decay of the magnetic energy EM / t�a and
associated growth of the eddy scale � / tb where a, b > 0.
This phenomenon was seen as a surprise, for the reason
that non-zero magnetic helicity charge is conventionally
taken as a necessary condition for long wavelength struc-
ture to arise during three dimensional MHD relaxation.
While indeed the asymptotic equilibrium state has an en-
ergy that is determined uniquely by the magnetic helicity
invariant, relaxation toward that state proceeds heirar-
chically over steadily increasing scale for any value of
HM . The primary assertion of this Letter is that such
behavior occurs in MHD because its energy bearing co-
herent structures are unstable to pairwise coalescence.
This correctly predicts that relaxation is heirarchical only
when the system is magnetized. In Section 1, we present
a numerical analysis contrasting the instability of station-
ary kinetic flow with analogous magnetostatic equilibria.
In Section 2 we develop a heirarchical relaxation model
and in Section 3 we confirm its predictions.

Inquiry on this process is broadly motivated within the
astrophysical sciences, being relevant to any plasma sys-
tem whose magnetic free energy is born at small scales.
Such may be the case for the cosmological magnetoge-
nesis [4, 5], for shock wave propagation in collisionless
plasma [6, 7], and for dissipation of AC power in the
solar [8] and pulsar [9] winds.

Equations. Incompressible MHD describes advection
and di↵usion of the vorticity ! = r ⇥ v and magnetic
field b = r⇥ a,

@t! = r⇥ (j ⇥ b+ v ⇥ !) + ⌫r2! (1)

@tb = r⇥ (v ⇥ b) + ⌘r2b. (2)

In the inviscid limit (⌫ = ⌘ = 0), such transport preserves
linkages of the vorticity (when b = 0) and magnetic field

lines, as expressed by the kinetic and magnetic helicity
invariants HK = hv · !i [10] and HM = ha · bi [11].
A key observation is that these quantities have di↵erent
dimensions; if energy concentrates around wavenumber
k0, then |HM | . k�1

0 EM whereas |HK | . k0EK . It fol-
lows that under helicity-constrained evolution, energies
EM = hb2/2i and EK = hv2/2i are minimized by con-
centrating around the container and viscous scales re-
spectively. It might then be anticipated that helical flux
tubes (force-free equilibria j ⇥ b = 0) with parallel elec-
trical current would have positive binding energy and be
unstable to pairwise coalsecence. Meanwhile, helical vor-
tex tubes (! ⇥ v = 0) would reduce their energy if split
into two smaller ones. The tendency for magnetic helic-
ity to shift toward large scales [12] is corollary with its
being a robust invariant. It is also premise for the Taylor
process [13] in which relaxing magnetized plasma comes
to rest in the longest wavelength force-free equilibrium
allowed by the container and preservation of HM .

Long wavelength structure emerging in the fully re-
laxed state, when coerced by the slower decay of one ideal
invariant relative to another, exemplifies selective decay
processes [14]. Magnetized fluid evolving with zero net
helicity is not required by that principle to exhibit any
such self-organization of its asymptotic state. Neverthe-
less, evolution prior to attaining equilibrium might still
develop structure over increasing scale. Our goal here is
to determine a necessary and su�cient condition for that
to be the case.

Cascade model. We envision that relaxation proceeds
over a sequence of stages during which the energy bearing
coherent structures (flux tubes) undergo pairwise coales-
cence. Each pair of merging flux tubes has parallel flow of
electrical current, but may have parallel or anti-parallel
magnetic flux. If q gives the ratio of right-polarized flux
tubes, then a fraction f = 2q(1� q) of the pairs are anti-
parallel (having opposite helicity charge). Upon merging,
those pairs annihilate and dissipate their energy. Merg-
ing conserves helicity charge and magnetic flux (and thus
cross sectional area) but the binding energy is dissipated
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Introduction. It was recently discovered that freely de-
caying turbulence in magnetohydrodynamics (MHD) ex-
hibits energy transfer toward larger scales even when net
magnetic helicity HM is zero [1–3]. Numerical experi-
ments of conducting fluid initiated at rest and embedding
a monochromatic non-helical magnetic field experience
self-similar decay of the magnetic energy EM / t�a and
associated growth of the eddy scale � / tb where a, b > 0.
This phenomenon was seen as a surprise, for the reason
that non-zero magnetic helicity charge is conventionally
taken as a necessary condition for long wavelength struc-
ture to arise during three dimensional MHD relaxation.
While indeed the asymptotic equilibrium state has an en-
ergy that is determined uniquely by the magnetic helicity
invariant, relaxation toward that state proceeds heirar-
chically over steadily increasing scale for any value of
HM . The primary assertion of this Letter is that such
behavior occurs in MHD because its energy bearing co-
herent structures are unstable to pairwise coalescence.
This correctly predicts that relaxation is heirarchical only
when the system is magnetized. In Section 1, we present
a numerical analysis contrasting the instability of station-
ary kinetic flow with analogous magnetostatic equilibria.
In Section 2 we develop a heirarchical relaxation model
and in Section 3 we confirm its predictions.

Inquiry on this process is broadly motivated within the
astrophysical sciences, being relevant to any plasma sys-
tem whose magnetic free energy is born at small scales.
Such may be the case for the cosmological magnetoge-
nesis [4, 5], for shock wave propagation in collisionless
plasma [6, 7], and for dissipation of AC power in the
solar [8] and pulsar [9] winds.

Equations. Incompressible MHD describes advection
and di↵usion of the vorticity ! = r ⇥ v and magnetic
field b = r⇥ a,

@t! = r⇥ (j ⇥ b+ v ⇥ !) + ⌫r2! (1)

@tb = r⇥ (v ⇥ b) + ⌘r2b. (2)

In the inviscid limit (⌫ = ⌘ = 0), such transport preserves
linkages of the vorticity (when b = 0) and magnetic field

lines, as expressed by the kinetic and magnetic helicity
invariants HK = hv · !i [10] and HM = ha · bi [11].
A key observation is that these quantities have di↵erent
dimensions; if energy concentrates around wavenumber
k0, then |HM | . k�1

0 EM whereas |HK | . k0EK . It fol-
lows that under helicity-constrained evolution, energies
EM = hb2/2i and EK = hv2/2i are minimized by con-
centrating around the container and viscous scales re-
spectively. It might then be anticipated that helical flux
tubes (force-free equilibria j ⇥ b = 0) with parallel elec-
trical current would have positive binding energy and be
unstable to pairwise coalsecence. Meanwhile, helical vor-
tex tubes (! ⇥ v = 0) would reduce their energy if split
into two smaller ones. The tendency for magnetic helic-
ity to shift toward large scales [12] is corollary with its
being a robust invariant. It is also premise for the Taylor
process [13] in which relaxing magnetized plasma comes
to rest in the longest wavelength force-free equilibrium
allowed by the container and preservation of HM .

Long wavelength structure emerging in the fully re-
laxed state, when coerced by the slower decay of one ideal
invariant relative to another, exemplifies selective decay
processes [14]. Magnetized fluid evolving with zero net
helicity is not required by that principle to exhibit any
such self-organization of its asymptotic state. Neverthe-
less, evolution prior to attaining equilibrium might still
develop structure over increasing scale. Our goal here is
to determine a necessary and su�cient condition for that
to be the case.

Cascade model. We envision that relaxation proceeds
over a sequence of stages during which the energy bearing
coherent structures (flux tubes) undergo pairwise coales-
cence. Each pair of merging flux tubes has parallel flow of
electrical current, but may have parallel or anti-parallel
magnetic flux. If q gives the ratio of right-polarized flux
tubes, then a fraction f = 2q(1� q) of the pairs are anti-
parallel (having opposite helicity charge). Upon merging,
those pairs annihilate and dissipate their energy. Merg-
ing conserves helicity charge and magnetic flux (and thus
cross sectional area) but the binding energy is dissipated
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We show the direction of scale-wise energy transfer in unforced turbulent media is dictated by
the type of instability a↵ecting the system’s base helical structures, and not by its net helicity
charge. In magnetized plasma, the base structures are helical flux tubes which are unstable to
pairwise coalescence. Even when net magnetic helicity is zero, half of the coalescence episodes occur
between parallel (as opposed to anti-parallel) flux tubes. This picture yields a family of self-similar
solutions in which the integral scale of relaxing magnetized plasma grows with the 2/5 power of time
when the system is non-helical, and the 2/3 power of time when maximally helical, in quantitative
agreement with numerical simulations. It also predicts no such behavior to occur in the analogous
three dimensional fluid mechanical relaxation, because helical vortex tubes do not coalesce, but
disrupt internally by the Kelvin-Helmholtz e↵ect.

Introduction. It was recently discovered that freely de-
caying turbulence in magnetohydrodynamics (MHD) ex-
hibits energy transfer toward larger scales even when net
magnetic helicity HM is zero [1–3]. Numerical experi-
ments of conducting fluid initiated at rest and embedding
a monochromatic non-helical magnetic field experience
self-similar decay of the magnetic energy EM / t�a and
associated growth of the eddy scale � / tb where a, b > 0.
This phenomenon was seen as a surprise, for the reason
that non-zero magnetic helicity charge is conventionally
taken as a necessary condition for long wavelength struc-
ture to arise during three dimensional MHD relaxation.
While indeed the asymptotic equilibrium state has an en-
ergy that is determined uniquely by the magnetic helicity
invariant, relaxation toward that state proceeds heirar-
chically over steadily increasing scale for any value of
HM . The primary assertion of this Letter is that such
behavior occurs in MHD because its energy bearing co-
herent structures are unstable to pairwise coalescence.
This correctly predicts that relaxation is heirarchical only
when the system is magnetized. In Section 1, we present
a numerical analysis contrasting the instability of station-
ary kinetic flow with analogous magnetostatic equilibria.
In Section 2 we develop a heirarchical relaxation model
and in Section 3 we confirm its predictions.

Inquiry on this process is broadly motivated within the
astrophysical sciences, being relevant to any plasma sys-
tem whose magnetic free energy is born at small scales.
Such may be the case for the cosmological magnetoge-
nesis [4, 5], for shock wave propagation in collisionless
plasma [6, 7], and for dissipation of AC power in the
solar [8] and pulsar [9] winds.

Equations. Incompressible MHD describes advection
and di↵usion of the vorticity ! = r ⇥ v and magnetic
field b = r⇥ a,

@t! = r⇥ (j ⇥ b+ v ⇥ !) + ⌫r2! (1)

@tb = r⇥ (v ⇥ b) + ⌘r2b. (2)

In the inviscid limit (⌫ = ⌘ = 0), such transport preserves
linkages of the vorticity (when b = 0) and magnetic field

lines, as expressed by the kinetic and magnetic helicity
invariants HK = hv · !i [10] and HM = ha · bi [11].
A key observation is that these quantities have di↵erent
dimensions; if energy concentrates around wavenumber
k0, then |HM | . k�1

0 EM whereas |HK | . k0EK . It fol-
lows that under helicity-constrained evolution, energies
EM = hb2/2i and EK = hv2/2i are minimized by con-
centrating around the container and viscous scales re-
spectively. It might then be anticipated that helical flux
tubes (force-free equilibria j ⇥ b = 0) with parallel elec-
trical current would have positive binding energy and be
unstable to pairwise coalsecence. Meanwhile, helical vor-
tex tubes (! ⇥ v = 0) would reduce their energy if split
into two smaller ones. The tendency for magnetic helic-
ity to shift toward large scales [12] is corollary with its
being a robust invariant. It is also premise for the Taylor
process [13] in which relaxing magnetized plasma comes
to rest in the longest wavelength force-free equilibrium
allowed by the container and preservation of HM .

Long wavelength structure emerging in the fully re-
laxed state, when coerced by the slower decay of one ideal
invariant relative to another, exemplifies selective decay
processes [14]. Magnetized fluid evolving with zero net
helicity is not required by that principle to exhibit any
such self-organization of its asymptotic state. Neverthe-
less, evolution prior to attaining equilibrium might still
develop structure over increasing scale. Our goal here is
to determine a necessary and su�cient condition for that
to be the case.

Cascade model. We envision that relaxation proceeds
over a sequence of stages during which the energy bearing
coherent structures (flux tubes) undergo pairwise coales-
cence. Each pair of merging flux tubes has parallel flow of
electrical current, but may have parallel or anti-parallel
magnetic flux. If q gives the ratio of right-polarized flux
tubes, then a fraction f = 2q(1� q) of the pairs are anti-
parallel (having opposite helicity charge). Upon merging,
those pairs annihilate and dissipate their energy. Merg-
ing conserves helicity charge and magnetic flux (and thus
cross sectional area) but the binding energy is dissipated
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“Conjecture: inverse transfer occurs exactly 
when the primary instability is coalescence.”

This predicts no self-assembly in 3D hydrodynamics (no 
surprise here)
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We show the direction of scale-wise energy transfer in unforced turbulent media is dictated by
the type of instability a↵ecting the system’s base helical structures, more so than by its net helicity
charge. In magnetized plasma, the base structures are helical flux tubes which are unstable to
pairwise coalescence. Even when net magnetic helicity is zero, half of the coalescence episodes
occur between parallel (as opposed to anti-parallel) flux tubes. This picture yields a family of
self-similar solutions in which the integral scale of relaxing magnetized plasma grows with the 2/5
power of time when the system is non-helical, and the 2/3 power of time when maximally helical,
in quantitative agreement with recent numerical findings. It also predicts no such behavior to occur
in the analogous three dimensional fluid mechanical relaxation, because helical vortex tubes do
not coalesce, but disrupt internally by the Kelvin-Helmholtz e↵ect. We present direct numerical
simulations of representative magnetized and unmagnetized systems which support this picture.

Introduction. It was recently discovered that freely de-
caying turbulence in magnetohydrodynamics (MHD) ex-
hibits energy transfer toward larger scales even when net
magnetic helicity is zero [1–3]. Numerical experiments of
conducting fluid initiated at rest with a monochromatic
non-helical magnetic field exhibit self-similar decay of the
magnetic energy EM / t�a and associated growth of the
eddy scale � / tb where a, b > 0. This phenomenon was
seen as a surprise, for the reason that non-zero magnetic
helicity charge is conventionally taken as a necessary con-
dition for long wavelength structure to arise during three
dimensional MHD relaxation. While indeed the energy of
the asymptotic equilibrium state is determined uniquely
by the magnetic helicity invariant, magnetized plasma re-
laxes to that state in a heirarchical fashion. The primary
assertion of this Letter is that such behavior occurs in
MHD because its energy bearing coherent structures are
unstable to pairwise coalescence. This correctly predicts
that relaxation is heirarchical only when the system is
magnetized. In Section 1, we present a numerical anal-
ysis contrasting the instability of stationary kinetic flow
with analagous magnetostatic equilibria. In Section 2 we
develop a heirarchical relaxation model and in Section 3
we confirm its predictions.

Inquiry on this process is broadly motivated within the
astrophysical sciences, being relevant to any plasma sys-
tem whose magnetic free energy is born at small scales.
Such may be the case for the cosmological magnetoge-
nesis [4, 5], for shock wave propagation in collisionless
plasma [6, 7], and for dissipation of AC power in the
solar [8] and pulsar [9] winds.

Equations. Incompressible MHD describes advection
and di↵usion of the vorticity ! = r ⇥ v and magnetic
field b = r⇥ a,

@t! = r⇥ (j ⇥ b+ v ⇥ !) + ⌫r2! (1)

@tb = r⇥ (v ⇥ b) + ⌘r2b. (2)

In the inviscid limit (⌫ = ⌘ = 0), such transport preserves
linkages of the vorticity (when b = 0) and magnetic field

lines, as expressed by the kinetic and magnetic helicity
invariants HK = hv · !i [10] and HM = ha · bi [11].
A key observation is that these quantities have di↵erent
dimensions; if energy concentrates around wavenumber
k0, then |HM | . k�1

0 EM whereas |HK | . k0EK . It fol-
lows that under helicity-constrained evolution, energies
EM = hb2/2i and EK = hv2/2i are minimized by con-
centrating around the container and viscous scales re-
spectively. It might then be anticipated that helical flux
tubes (force-free equilibria j ⇥ b = 0) with parallel elec-
trical current would have positive binding energy and be
unstable to pairwise coalsecence. Meanwhile, helical vor-
tex tubes (! ⇥ v = 0) would reduce their energy if split
into two smaller ones. The tendency for magnetic helic-
ity to shift toward large scales [12] is corollary with its
being a robust invariant. It is also premise for the Taylor
process [13] in which relaxing magnetized plasma comes
to rest in the longest wavelength force-free equilibrium
allowed by the container and preservation of HM .

Long wavelength structure emerging in the fully re-
laxed state, when coerced by the slower decay of one ideal
invariant relative to another, exemplifies selective decay
processes [14]. Magnetized fluid evolving with zero net
helicity is not required by that principle to exhibit any
such self-organization of its asymptotic state. Neverthe-
less, evolution prior to attaining equilibrium might still
develop structure over increasing scale. Our goal here is
to determine a necessary and su�cient condition for that
to be the case.

Cascade model. We envision that relaxation proceeds
over a sequence of stages during which the energy bearing
coherent structures (flux tubes) undergo pairwise coales-
cence. Each pair of merging flux tubes has parallel flow of
electrical current, but may have parallel or anti-parallel
magnetic flux. If q gives the ratio of right-polarized flux
tubes, then a fraction f = 2q(1� q) of the pairs are anti-
parallel (having opposite helicity charge). Upon merging,
those pairs annihilate and dissipate their energy. Merg-
ing conserves helicity charge and magnetic flux (and thus
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In 3D MHD there is inverse transfer for any 
value of the net helicity.
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We show the direction of scale-wise energy transfer in unforced turbulent media is dictated by
the type of instability a↵ecting the system’s base helical structures, more so than by its net helicity
charge. In magnetized plasma, the base structures are helical flux tubes which are unstable to
pairwise coalescence. Even when net magnetic helicity is zero, half of the coalescence episodes
occur between parallel (as opposed to anti-parallel) flux tubes. This picture yields a family of
self-similar solutions in which the integral scale of relaxing magnetized plasma grows with the 2/5
power of time when the system is non-helical, and the 2/3 power of time when maximally helical,
in quantitative agreement with recent numerical findings. It also predicts no such behavior to occur
in the analogous three dimensional fluid mechanical relaxation, because helical vortex tubes do
not coalesce, but disrupt internally by the Kelvin-Helmholtz e↵ect. We present direct numerical
simulations of representative magnetized and unmagnetized systems which support this picture.

Introduction. It was recently discovered that freely de-
caying turbulence in magnetohydrodynamics (MHD) ex-
hibits energy transfer toward larger scales even when net
magnetic helicity is zero [1–3]. Numerical experiments of
conducting fluid initiated at rest with a monochromatic
non-helical magnetic field exhibit self-similar decay of the
magnetic energy EM / t�a and associated growth of the
eddy scale � / tb where a, b > 0. This phenomenon was
seen as a surprise, for the reason that non-zero magnetic
helicity charge is conventionally taken as a necessary con-
dition for long wavelength structure to arise during three
dimensional MHD relaxation. While indeed the energy of
the asymptotic equilibrium state is determined uniquely
by the magnetic helicity invariant, magnetized plasma re-
laxes to that state in a heirarchical fashion. The primary
assertion of this Letter is that such behavior occurs in
MHD because its energy bearing coherent structures are
unstable to pairwise coalescence. This correctly predicts
that relaxation is heirarchical only when the system is
magnetized. In Section 1, we present a numerical anal-
ysis contrasting the instability of stationary kinetic flow
with analagous magnetostatic equilibria. In Section 2 we
develop a heirarchical relaxation model and in Section 3
we confirm its predictions.

Inquiry on this process is broadly motivated within the
astrophysical sciences, being relevant to any plasma sys-
tem whose magnetic free energy is born at small scales.
Such may be the case for the cosmological magnetoge-
nesis [4, 5], for shock wave propagation in collisionless
plasma [6, 7], and for dissipation of AC power in the
solar [8] and pulsar [9] winds.

Equations. Incompressible MHD describes advection
and di↵usion of the vorticity ! = r ⇥ v and magnetic
field b = r⇥ a,

@t! = r⇥ (j ⇥ b+ v ⇥ !) + ⌫r2! (1)

@tb = r⇥ (v ⇥ b) + ⌘r2b. (2)

In the inviscid limit (⌫ = ⌘ = 0), such transport preserves
linkages of the vorticity (when b = 0) and magnetic field

lines, as expressed by the kinetic and magnetic helicity
invariants HK = hv · !i [10] and HM = ha · bi [11].
A key observation is that these quantities have di↵erent
dimensions; if energy concentrates around wavenumber
k0, then |HM | . k�1

0 EM whereas |HK | . k0EK . It fol-
lows that under helicity-constrained evolution, energies
EM = hb2/2i and EK = hv2/2i are minimized by con-
centrating around the container and viscous scales re-
spectively. It might then be anticipated that helical flux
tubes (force-free equilibria j ⇥ b = 0) with parallel elec-
trical current would have positive binding energy and be
unstable to pairwise coalsecence. Meanwhile, helical vor-
tex tubes (! ⇥ v = 0) would reduce their energy if split
into two smaller ones. The tendency for magnetic helic-
ity to shift toward large scales [12] is corollary with its
being a robust invariant. It is also premise for the Taylor
process [13] in which relaxing magnetized plasma comes
to rest in the longest wavelength force-free equilibrium
allowed by the container and preservation of HM .

Long wavelength structure emerging in the fully re-
laxed state, when coerced by the slower decay of one ideal
invariant relative to another, exemplifies selective decay
processes [14]. Magnetized fluid evolving with zero net
helicity is not required by that principle to exhibit any
such self-organization of its asymptotic state. Neverthe-
less, evolution prior to attaining equilibrium might still
develop structure over increasing scale. Our goal here is
to determine a necessary and su�cient condition for that
to be the case.

Cascade model. We envision that relaxation proceeds
over a sequence of stages during which the energy bearing
coherent structures (flux tubes) undergo pairwise coales-
cence. Each pair of merging flux tubes has parallel flow of
electrical current, but may have parallel or anti-parallel
magnetic flux. If q gives the ratio of right-polarized flux
tubes, then a fraction f = 2q(1� q) of the pairs are anti-
parallel (having opposite helicity charge). Upon merging,
those pairs annihilate and dissipate their energy. Merg-
ing conserves helicity charge and magnetic flux (and thus
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Figure 3. PM (k, t) shown at nine representative times, including t = 0 and
proceeding through t = 22.6tA with lines of increasing width. The dashed
lines show power laws with indices 3.5 and −2 for the scales larger and
smaller than the injection scale 2π/k0, respectively. The dash-dotted line shows
PM (k, τk) ∝ k4/3.

energy spectrum relaxes to a form which is well described by a
split power law

PM (k, tA) ∝

⎧
⎪⎨

⎪⎩

(
k
k0

)α

k < k0

(
k
k0

)β

k ! k0

, (2)

where the sub-inertial and inertial range indices are measured to
be α = 3.50 ± 0.04 and β = −1.91 ± 0.005, respectively. The
values α = 7/2 and β = −2 will be adopted for simplicity. We
note here that the magnetic energy spectrum is found to be signif-
icantly steeper than 5/3 as is predicted in the Goldreich–Sridhar
(Goldreich & Sridhar 1995) phenomenology. 5/3 scaling has
been verified numerically in strong Alfvén wave turbulence as
well as isotropic MHD turbulence driven kinetically at large
scales (see, e.g., Tobias et al. 2011 for a review). However,
it appears that isotropic, freely decaying MHD turbulence has
a slope that is significantly steeper than is predicted by the
Goldreich–Sridhar theory.

As shown in the upper panel of Figure 4, the break in the
power spectrum lies at kt ∝ tγ , where γ is consistent with
the value of −2/5 predicted by scaling arguments made in
Shiromizu (1998) and Olesen (1997). Throughout the simu-
lation, the sub-inertial and inertial range indices remain fixed,
with the peak of magnetic energy moving down and to the
left on the axes of Figure 3. In other words, the evolution of
the magnetic energy spectrum is very nearly self-similar, being
well-described by

PM (k, t) = sγβ+δPM (ks−γ , tA), (3)

where s = t/tA and δ = −4/3 is the power-law index for decay
at all wavenumbers larger than kt, as shown in Figure 2. In this
empirical model, the magnetic energy at each scale larger than
k−1
t grows proportionally to tγ (β−α)+δ = t13/15 and the energy

associated with peak magnetic structures, PM (kt , t) diminishes
as tγβ+δ = t−8/15. Those peaks trace out PM (k, τk) ∝ k4/3 as
shown in the dash-dotted line of Figure 3. In the limit of Lkt →
∞ the total magnetic energy EM (t) ∝ tγ (β+1)+δ = t−14/15 as
shown in the lower panel of Figure 4.

Figure 4. Upper panel shows the peak wavenumber kt as a function of time,
alongside a power law of index −2/5 for comparison to analytic predictions. The
steps are an artifact of the finite spectral resolution. The middle panel shows
PM (kt , t) as a function of t, and the power law with index −8/15 predicted
by the empirical model. The lower panel shows the evolution of the average
magnetic energy density EM (t), which deviates slightly from the reference
slope of −14/15 due to the finite value of Lkt .

4. DISCUSSION

4.1. Comparison with Other Studies

Direct numerical simulation of freely decaying nonhelical
MHD turbulence have been carried out by Christensson et al.
(2001) and Banerjee & Jedamzik (2004) which report selective
decay and no inverse cascade. Nevertheless, it is possible that an
inverse cascade was present, but hidden beneath the sub-inertial
part of the imposed energy spectrum, for which indices of 2
and 4 were chosen by each study, respectively. It was observed
here that the locus of peak spectral energy PM (k, τk) ∝ k4/3, so
additional scale separation might have been required in those
studies for an inverse cascade to become apparent. Our results
are in general agreement with those of Brandenburg et al. (2014),
which are based on direct numerical simulations of nonhelical,
nonrelativistic MHD turbulence done with very high resolution.
That study reported a slightly steeper slope of the sub-inertial
range.

Inverse cascading of magnetic energy in the test-field limit
was also reported very recently by Berera & Linkmann (2014).
This study found that passive vector fields advected within fully
developed, isotropic hydrodynamic turbulence attain coherency
over increasing spatial scales. This discovery offers an interest-
ing avenue to examining the generality of inverse cascading.

The inverse cascading observed in our study is not the result of
residual helicity in the initial data. Helicity conservation requires
only that the correlation scale k−1

t is larger than k−1
M = HM/EM

(Tevzadze et al. 2012). However, in our study, k−1
M evolves

from 1/1000 of the grid spacing up to roughly the grid spacing
throughout the simulation. So in fact the correlation scale k−1

t
remains at least 1000 times larger than the lower limit imposed
by helicity conservation throughout the simulation.

4.2. Generality of the Initial Value Problem

We have found that inverse cascading of magnetic energy
proceeds from the initial value problem PM (k, 0) ∝ δ(k − k0).

3



2

cross sectional area) but the binding energy is dissipated
through a direct cascade. This scenario yields the system

hn = 2hn�1 (3)

✏n = ↵n hn

sn =
1

2
(1� f) sn�1

↵n =

r
1

2
↵n�1

En = sn ✏n

where at each stage n, hn and ✏n are the helicity charge
and magnetic energy per flux tube, sn is the surviving
number of flux tubes, ↵n is their inverse radius, and En
is volume averaged magnetic energy density. Stages of
coalescence proceed at the rate ṅ = ↵nvn where vn ⌘
vA(En) is the Alfvén speed. In the non-relativistic limit
where vA(E) / E1/2, System 3 has the exact solution

n = ⇣�1 log (1 + ⇣t)

E = E0(1 + ⇣t)�a

↵ = ↵0(1 + ⇣t)�b

where t here is multipled by the nominal Alfvén rate
↵0v0, and the constants are given by

⇣ = b�1 log 21/2

a = b [1� 2 log2(1� f)]

b = [3/2� log2(1� f)]�1 .

The energy decay exponents for non-helical and maxi-
mally helical systems are given by a0 = 6/5 and a1 = 2/3
respectively, while the eddy scale exponents are given by
b0 = 2/5 and b1 = 2/3.

Simulations. We solve the incompressible Navier-
Stokes (NS) or magnetohydrodynamic (MHD) equations
on the triply periodic domain. Initial data for u or b are
special cases of the function

f =
X

|k|=↵0

(↵0 k

+ ✏ik ⇥ 
k

)eik·x (4)

k · 
k

= 0

 
k

=  ⇤
�k

where ↵0 is the spatial frequency. f is monochomatic and
has the Beltrami property r⇥ f = ↵0f when ✏ = ±1.

Discussion.

1. Dynamo.

2. 1/f noise characteristic of inverse cascades.

3. This view of decaying turbulence provides firm
grounding for the “pulsar wind rogue-wave” theory
of Crab Nebula �-ray flares.

Inverse energy transfer discussed here is not expected
to assist in large-scale dynamo action. The reason is that

FIG. 1. Sequence of images depicting the instability of kinetic
ABC flow in 2D and 3D.

FIG. 2. Growth of the instability.

continuous agitation at a given scale ensures the largest
eddies remain super-Alfvénic. Such vigorous stirring is
by definition faster than the energy condensation rate.
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We show the direction of scale-wise energy transfer in unforced turbulent media is dictated by
the type of instability a↵ecting the system’s base helical structures, more so than by its net helicity
charge. In magnetized plasma, the base structures are helical flux tubes which are unstable to
pairwise coalescence. Even when net magnetic helicity is zero, half of the coalescence episodes
occur between parallel (as opposed to anti-parallel) flux tubes. This picture yields a family of
self-similar solutions in which the integral scale of relaxing magnetized plasma grows with the 2/5
power of time when the system is non-helical, and the 2/3 power of time when maximally helical,
in quantitative agreement with recent numerical findings. It also predicts no such behavior to occur
in the analogous three dimensional fluid mechanical relaxation, because helical vortex tubes do
not coalesce, but disrupt internally by the Kelvin-Helmholtz e↵ect. We present direct numerical
simulations of representative magnetized and unmagnetized systems which support this picture.

Introduction. It was recently discovered that freely de-
caying turbulence in magnetohydrodynamics (MHD) ex-
hibits energy transfer toward larger scales even when net
magnetic helicity is zero [1–3]. Numerical experiments of
conducting fluid initiated at rest with a monochromatic
non-helical magnetic field exhibit self-similar decay of the
magnetic energy EM / t�a and associated growth of the
eddy scale � / tb where a, b > 0. This phenomenon was
seen as a surprise, for the reason that non-zero magnetic
helicity charge is conventionally taken as a necessary con-
dition for long wavelength structure to arise during three
dimensional MHD relaxation. While indeed the energy of
the asymptotic equilibrium state is determined uniquely
by the magnetic helicity invariant, magnetized plasma re-
laxes to that state in a heirarchical fashion. The primary
assertion of this Letter is that such behavior occurs in
MHD because its energy bearing coherent structures are
unstable to pairwise coalescence. This correctly predicts
that relaxation is heirarchical only when the system is
magnetized. In Section 1, we present a numerical anal-
ysis contrasting the instability of stationary kinetic flow
with analagous magnetostatic equilibria. In Section 2 we
develop a heirarchical relaxation model and in Section 3
we confirm its predictions.

Inquiry on this process is broadly motivated within the
astrophysical sciences, being relevant to any plasma sys-
tem whose magnetic free energy is born at small scales.
Such may be the case for the cosmological magnetoge-
nesis [4, 5], for shock wave propagation in collisionless
plasma [6, 7], and for dissipation of AC power in the
solar [8] and pulsar [9] winds.

Equations. Incompressible MHD describes advection
and di↵usion of the vorticity ! = r ⇥ v and magnetic
field b = r⇥ a,

@t! = r⇥ (j ⇥ b+ v ⇥ !) + ⌫r2! (1)

@tb = r⇥ (v ⇥ b) + ⌘r2b. (2)

In the inviscid limit (⌫ = ⌘ = 0), such transport preserves
linkages of the vorticity (when b = 0) and magnetic field

lines, as expressed by the kinetic and magnetic helicity
invariants HK = hv · !i [10] and HM = ha · bi [11].
A key observation is that these quantities have di↵erent
dimensions; if energy concentrates around wavenumber
k0, then |HM | . k�1

0 EM whereas |HK | . k0EK . It fol-
lows that under helicity-constrained evolution, energies
EM = hb2/2i and EK = hv2/2i are minimized by con-
centrating around the container and viscous scales re-
spectively. It might then be anticipated that helical flux
tubes (force-free equilibria j ⇥ b = 0) with parallel elec-
trical current would have positive binding energy and be
unstable to pairwise coalsecence. Meanwhile, helical vor-
tex tubes (! ⇥ v = 0) would reduce their energy if split
into two smaller ones. The tendency for magnetic helic-
ity to shift toward large scales [12] is corollary with its
being a robust invariant. It is also premise for the Taylor
process [13] in which relaxing magnetized plasma comes
to rest in the longest wavelength force-free equilibrium
allowed by the container and preservation of HM .

Long wavelength structure emerging in the fully re-
laxed state, when coerced by the slower decay of one ideal
invariant relative to another, exemplifies selective decay
processes [14]. Magnetized fluid evolving with zero net
helicity is not required by that principle to exhibit any
such self-organization of its asymptotic state. Neverthe-
less, evolution prior to attaining equilibrium might still
develop structure over increasing scale. Our goal here is
to determine a necessary and su�cient condition for that
to be the case.

Cascade model. We envision that relaxation proceeds
over a sequence of stages during which the energy bearing
coherent structures (flux tubes) undergo pairwise coales-
cence. Each pair of merging flux tubes has parallel flow of
electrical current, but may have parallel or anti-parallel
magnetic flux. If q gives the ratio of right-polarized flux
tubes, then a fraction f = 2q(1� q) of the pairs are anti-
parallel (having opposite helicity charge). Upon merging,
those pairs annihilate and dissipate their energy. Merg-
ing conserves helicity charge and magnetic flux (and thus
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We show the direction of scale-wise energy transfer in unforced turbulent media is dictated by
the type of instability a↵ecting the system’s base helical structures, more so than by its net helicity
charge. In magnetized plasma, the base structures are helical flux tubes which are unstable to
pairwise coalescence. Even when net magnetic helicity is zero, half of the coalescence episodes
occur between parallel (as opposed to anti-parallel) flux tubes. This picture yields a family of
self-similar solutions in which the integral scale of relaxing magnetized plasma grows with the 2/5
power of time when the system is non-helical, and the 2/3 power of time when maximally helical,
in quantitative agreement with recent numerical findings. It also predicts no such behavior to occur
in the analogous three dimensional fluid mechanical relaxation, because helical vortex tubes do
not coalesce, but disrupt internally by the Kelvin-Helmholtz e↵ect. We present direct numerical
simulations of representative magnetized and unmagnetized systems which support this picture.

Introduction. It was recently discovered that freely de-
caying turbulence in magnetohydrodynamics (MHD) ex-
hibits energy transfer toward larger scales even when net
magnetic helicity is zero [1–3]. Numerical experiments of
conducting fluid initiated at rest with a monochromatic
non-helical magnetic field exhibit self-similar decay of the
magnetic energy EM / t�a and associated growth of the
eddy scale � / tb where a, b > 0. This phenomenon was
seen as a surprise, for the reason that non-zero magnetic
helicity charge is conventionally taken as a necessary con-
dition for long wavelength structure to arise during three
dimensional MHD relaxation. While indeed the energy of
the asymptotic equilibrium state is determined uniquely
by the magnetic helicity invariant, magnetized plasma re-
laxes to that state in a heirarchical fashion. The primary
assertion of this Letter is that such behavior occurs in
MHD because its energy bearing coherent structures are
unstable to pairwise coalescence. This correctly predicts
that relaxation is heirarchical only when the system is
magnetized. In Section 1, we present a numerical anal-
ysis contrasting the instability of stationary kinetic flow
with analagous magnetostatic equilibria. In Section 2 we
develop a heirarchical relaxation model and in Section 3
we confirm its predictions.

Inquiry on this process is broadly motivated within the
astrophysical sciences, being relevant to any plasma sys-
tem whose magnetic free energy is born at small scales.
Such may be the case for the cosmological magnetoge-
nesis [4, 5], for shock wave propagation in collisionless
plasma [6, 7], and for dissipation of AC power in the
solar [8] and pulsar [9] winds.

Equations. Incompressible MHD describes advection
and di↵usion of the vorticity ! = r ⇥ v and magnetic
field b = r⇥ a,

@t! = r⇥ (j ⇥ b+ v ⇥ !) + ⌫r2! (1)

@tb = r⇥ (v ⇥ b) + ⌘r2b. (2)

In the inviscid limit (⌫ = ⌘ = 0), such transport preserves
linkages of the vorticity (when b = 0) and magnetic field

lines, as expressed by the kinetic and magnetic helicity
invariants HK = hv · !i [10] and HM = ha · bi [11].
A key observation is that these quantities have di↵erent
dimensions; if energy concentrates around wavenumber
k0, then |HM | . k�1

0 EM whereas |HK | . k0EK . It fol-
lows that under helicity-constrained evolution, energies
EM = hb2/2i and EK = hv2/2i are minimized by con-
centrating around the container and viscous scales re-
spectively. It might then be anticipated that helical flux
tubes (force-free equilibria j ⇥ b = 0) with parallel elec-
trical current would have positive binding energy and be
unstable to pairwise coalsecence. Meanwhile, helical vor-
tex tubes (! ⇥ v = 0) would reduce their energy if split
into two smaller ones. The tendency for magnetic helic-
ity to shift toward large scales [12] is corollary with its
being a robust invariant. It is also premise for the Taylor
process [13] in which relaxing magnetized plasma comes
to rest in the longest wavelength force-free equilibrium
allowed by the container and preservation of HM .

Long wavelength structure emerging in the fully re-
laxed state, when coerced by the slower decay of one ideal
invariant relative to another, exemplifies selective decay
processes [14]. Magnetized fluid evolving with zero net
helicity is not required by that principle to exhibit any
such self-organization of its asymptotic state. Neverthe-
less, evolution prior to attaining equilibrium might still
develop structure over increasing scale. Our goal here is
to determine a necessary and su�cient condition for that
to be the case.

Cascade model. We envision that relaxation proceeds
over a sequence of stages during which the energy bearing
coherent structures (flux tubes) undergo pairwise coales-
cence. Each pair of merging flux tubes has parallel flow of
electrical current, but may have parallel or anti-parallel
magnetic flux. If q gives the ratio of right-polarized flux
tubes, then a fraction f = 2q(1� q) of the pairs are anti-
parallel (having opposite helicity charge). Upon merging,
those pairs annihilate and dissipate their energy. Merg-
ing conserves helicity charge and magnetic flux (and thus
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We show the direction of scale-wise energy transfer in unforced turbulent media is dictated by
the type of instability a↵ecting the system’s base helical structures, and not by its net helicity
charge. In magnetized plasma, the base structures are helical flux tubes which are unstable to
pairwise coalescence. Even when net magnetic helicity is zero, half of the coalescence episodes occur
between parallel (as opposed to anti-parallel) flux tubes. This picture yields a family of self-similar
solutions in which the integral scale of relaxing magnetized plasma grows with the 2/5 power of time
when the system is non-helical, and the 2/3 power of time when maximally helical, in quantitative
agreement with numerical simulations. It also predicts no such behavior to occur in the analogous
three dimensional fluid mechanical relaxation, because helical vortex tubes do not coalesce, but
disrupt internally by the Kelvin-Helmholtz e↵ect.

Introduction. It was recently discovered that freely de-
caying turbulence in magnetohydrodynamics (MHD) ex-
hibits energy transfer toward larger scales even when net
magnetic helicity HM is zero [1–3]. Numerical experi-
ments of conducting fluid initiated at rest and embedding
a monochromatic non-helical magnetic field experience
self-similar decay of the magnetic energy EM / t�a and
associated growth of the eddy scale � / tb where a, b > 0.
This phenomenon was seen as a surprise, for the reason
that non-zero magnetic helicity charge is conventionally
taken as a necessary condition for long wavelength struc-
ture to arise during three dimensional MHD relaxation.
While indeed the asymptotic equilibrium state has an en-
ergy that is determined uniquely by the magnetic helicity
invariant, relaxation toward that state proceeds heirar-
chically over steadily increasing scale for any value of
HM . The primary assertion of this Letter is that such
behavior occurs in MHD because its energy bearing co-
herent structures are unstable to pairwise coalescence.
This correctly predicts that relaxation is heirarchical only
when the system is magnetized. In Section 1, we present
a numerical analysis contrasting the instability of station-
ary kinetic flow with analogous magnetostatic equilibria.
In Section 2 we develop a heirarchical relaxation model
and in Section 3 we confirm its predictions.

Inquiry on this process is broadly motivated within the
astrophysical sciences, being relevant to any plasma sys-
tem whose magnetic free energy is born at small scales.
Such may be the case for the cosmological magnetoge-
nesis [4, 5], for shock wave propagation in collisionless
plasma [6, 7], and for dissipation of AC power in the
solar [8] and pulsar [9] winds.

Equations. Incompressible MHD describes advection
and di↵usion of the vorticity ! = r ⇥ v and magnetic
field b = r⇥ a,

@t! = r⇥ (j ⇥ b+ v ⇥ !) + ⌫r2! (1)

@tb = r⇥ (v ⇥ b) + ⌘r2b. (2)

In the inviscid limit (⌫ = ⌘ = 0), such transport preserves
linkages of the vorticity (when b = 0) and magnetic field

lines, as expressed by the kinetic and magnetic helicity
invariants HK = hv · !i [10] and HM = ha · bi [11].
A key observation is that these quantities have di↵erent
dimensions; if energy concentrates around wavenumber
k0, then |HM | . k�1

0 EM whereas |HK | . k0EK . It fol-
lows that under helicity-constrained evolution, energies
EM = hb2/2i and EK = hv2/2i are minimized by con-
centrating around the container and viscous scales re-
spectively. It might then be anticipated that helical flux
tubes (force-free equilibria j ⇥ b = 0) with parallel elec-
trical current would have positive binding energy and be
unstable to pairwise coalsecence. Meanwhile, helical vor-
tex tubes (! ⇥ v = 0) would reduce their energy if split
into two smaller ones. The tendency for magnetic helic-
ity to shift toward large scales [12] is corollary with its
being a robust invariant. It is also premise for the Taylor
process [13] in which relaxing magnetized plasma comes
to rest in the longest wavelength force-free equilibrium
allowed by the container and preservation of HM .

Long wavelength structure emerging in the fully re-
laxed state, when coerced by the slower decay of one ideal
invariant relative to another, exemplifies selective decay
processes [14]. Magnetized fluid evolving with zero net
helicity is not required by that principle to exhibit any
such self-organization of its asymptotic state. Neverthe-
less, evolution prior to attaining equilibrium might still
develop structure over increasing scale. Our goal here is
to determine a necessary and su�cient condition for that
to be the case.

Cascade model. We envision that relaxation proceeds
over a sequence of stages during which the energy bearing
coherent structures (flux tubes) undergo pairwise coales-
cence. Each pair of merging flux tubes has parallel flow of
electrical current, but may have parallel or anti-parallel
magnetic flux. If q gives the ratio of right-polarized flux
tubes, then a fraction f = 2q(1� q) of the pairs are anti-
parallel (having opposite helicity charge). Upon merging,
those pairs annihilate and dissipate their energy. Merg-
ing conserves helicity charge and magnetic flux (and thus
cross sectional area) but the binding energy is dissipated
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We show the direction of scale-wise energy transfer in unforced turbulent media is dictated by
the type of instability a↵ecting the system’s base helical structures, and not by its net helicity
charge. In magnetized plasma, the base structures are helical flux tubes which are unstable to
pairwise coalescence. Even when net magnetic helicity is zero, half of the coalescence episodes occur
between parallel (as opposed to anti-parallel) flux tubes. This picture yields a family of self-similar
solutions in which the integral scale of relaxing magnetized plasma grows with the 2/5 power of time
when the system is non-helical, and the 2/3 power of time when maximally helical, in quantitative
agreement with numerical simulations. It also predicts no such behavior to occur in the analogous
three dimensional fluid mechanical relaxation, because helical vortex tubes do not coalesce, but
disrupt internally by the Kelvin-Helmholtz e↵ect.

Introduction. It was recently discovered that freely de-
caying turbulence in magnetohydrodynamics (MHD) ex-
hibits energy transfer toward larger scales even when net
magnetic helicity HM is zero [1–3]. Numerical experi-
ments of conducting fluid initiated at rest and embedding
a monochromatic non-helical magnetic field experience
self-similar decay of the magnetic energy EM / t�a and
associated growth of the eddy scale � / tb where a, b > 0.
This phenomenon was seen as a surprise, for the reason
that non-zero magnetic helicity charge is conventionally
taken as a necessary condition for long wavelength struc-
ture to arise during three dimensional MHD relaxation.
While indeed the asymptotic equilibrium state has an en-
ergy that is determined uniquely by the magnetic helicity
invariant, relaxation toward that state proceeds heirar-
chically over steadily increasing scale for any value of
HM . The primary assertion of this Letter is that such
behavior occurs in MHD because its energy bearing co-
herent structures are unstable to pairwise coalescence.
This correctly predicts that relaxation is heirarchical only
when the system is magnetized. In Section 1, we present
a numerical analysis contrasting the instability of station-
ary kinetic flow with analogous magnetostatic equilibria.
In Section 2 we develop a heirarchical relaxation model
and in Section 3 we confirm its predictions.

Inquiry on this process is broadly motivated within the
astrophysical sciences, being relevant to any plasma sys-
tem whose magnetic free energy is born at small scales.
Such may be the case for the cosmological magnetoge-
nesis [4, 5], for shock wave propagation in collisionless
plasma [6, 7], and for dissipation of AC power in the
solar [8] and pulsar [9] winds.

Equations. Incompressible MHD describes advection
and di↵usion of the vorticity ! = r ⇥ v and magnetic
field b = r⇥ a,

@t! = r⇥ (j ⇥ b+ v ⇥ !) + ⌫r2! (1)

@tb = r⇥ (v ⇥ b) + ⌘r2b. (2)

In the inviscid limit (⌫ = ⌘ = 0), such transport preserves
linkages of the vorticity (when b = 0) and magnetic field

lines, as expressed by the kinetic and magnetic helicity
invariants HK = hv · !i [10] and HM = ha · bi [11].
A key observation is that these quantities have di↵erent
dimensions; if energy concentrates around wavenumber
k0, then |HM | . k�1

0 EM whereas |HK | . k0EK . It fol-
lows that under helicity-constrained evolution, energies
EM = hb2/2i and EK = hv2/2i are minimized by con-
centrating around the container and viscous scales re-
spectively. It might then be anticipated that helical flux
tubes (force-free equilibria j ⇥ b = 0) with parallel elec-
trical current would have positive binding energy and be
unstable to pairwise coalsecence. Meanwhile, helical vor-
tex tubes (! ⇥ v = 0) would reduce their energy if split
into two smaller ones. The tendency for magnetic helic-
ity to shift toward large scales [12] is corollary with its
being a robust invariant. It is also premise for the Taylor
process [13] in which relaxing magnetized plasma comes
to rest in the longest wavelength force-free equilibrium
allowed by the container and preservation of HM .

Long wavelength structure emerging in the fully re-
laxed state, when coerced by the slower decay of one ideal
invariant relative to another, exemplifies selective decay
processes [14]. Magnetized fluid evolving with zero net
helicity is not required by that principle to exhibit any
such self-organization of its asymptotic state. Neverthe-
less, evolution prior to attaining equilibrium might still
develop structure over increasing scale. Our goal here is
to determine a necessary and su�cient condition for that
to be the case.

Cascade model. We envision that relaxation proceeds
over a sequence of stages during which the energy bearing
coherent structures (flux tubes) undergo pairwise coales-
cence. Each pair of merging flux tubes has parallel flow of
electrical current, but may have parallel or anti-parallel
magnetic flux. If q gives the ratio of right-polarized flux
tubes, then a fraction f = 2q(1� q) of the pairs are anti-
parallel (having opposite helicity charge). Upon merging,
those pairs annihilate and dissipate their energy. Merg-
ing conserves helicity charge and magnetic flux (and thus
cross sectional area) but the binding energy is dissipated
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Some ideas about the Crab flares.
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Require such excursions at a rate of once per year.
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*assuming isotropic emission

Is this compatible with intermittency of 
dissipation in MHD turbulence?

Temporal Intermittency of Energy Dissipation in Magnetohydrodynamic Turbulence
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Energy dissipation in magnetohydrodynamic (MHD) turbulence is known to be highly intermittent in
space, being concentrated in sheetlike coherent structures. Much less is known about intermittency in time,
another fundamental aspect of turbulence which has great importance for observations of solar flares and
other space or astrophysical phenomena. In this Letter, we investigate the temporal intermittency of energy
dissipation in numerical simulations of MHD turbulence. We consider four-dimensional spatiotemporal
structures, “flare events,” responsible for a large fraction of the energy dissipation. We find that although
the flare events are often highly complex, they exhibit robust power-law distributions and scaling relations.
We find that the probability distribution of dissipated energy has a power-law index close to α ≈ 1.75,
similar to observations of solar flares, indicating that intense dissipative events dominate the heating of the
system. We also discuss the temporal asymmetry of flare events as a signature of the turbulent cascade.
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Introduction.—Intermittency plays a major role in tur-
bulence by causing processes such as energy dissipation
and particle acceleration to be highly localized in coherent
structures. It also forestalls efforts toward a complete theory
of turbulence. Many tools have been employed to study
intermittency, including structure functions [1,2], scale-
dependent kurtosis [3], topological methods [4,5], and
statistics of discontinuities [6,7]. However, past studies
have mainly focused on spatial intermittency, giving
limited information about the dynamics. In order to under-
stand the temporal aspects of intermittency, including
characteristic time scales of structures as well as their
interactions and stability, a broader framework is needed.
A promising new paradigm is the statistical analysis of

coherent structures, which is robust and informative for
studies of intermittency. The occurrence rates, intensities,
and morphology of structures yield insight to the inhomo-
geneity, anisotropy, and characteristic scales of the dynam-
ics. Coherent structures can be simply identified as regions
in space bounded by an isosurface of some field. This was
used to study vorticity filaments in hydrodynamic turbu-
lence [8–10], magnetic structures in the kinematic dynamo
[11], and dissipative structures in magnetohydrodynamic
(MHD) turbulence [12–15] and ambipolar diffusion MHD
[16]. Since coherent structures and intense dissipative
events are experimentally observable, there are many
practical applications, including solar flares, instabilities
in fusion devices [17], and radiative signatures in optically
thin astrophysical plasmas, e.g., in black-hole accretion
disk coronae [18], hot accretion flows [19], and jets [20], in
pulsar wind nebulae [e.g., [21,22]], and possibly in the hot
gas in galaxy clusters.
This Letter addresses some fundamental aspects of

intermittency in MHD turbulence. A major question is

whether, in the limit of large Reynolds number, energy
dissipation is dominated by a few intense, large-scale
events or by many weak, small-scale events. A related
question is whether there is an inherent relationship
between spatial intermittency and temporal intermittency,
e.g., whether larger structures retain their coherency in
time. These temporal aspects of intermittency have been
practically unexplored in previous MHD studies.
In this Letter, we extend a framework previously

developed for the statistical analysis of dissipative struc-
tures [14] into the temporal realm, thereby considering 4D
spatiotemporal objects representing flare events. We apply
this novel methodology to study intermittency in numerical
simulations of strong incompressible MHD turbulence. We
describe the distributions, scalings, and evolution of flare
events by characterizing their length scales, durations,
dissipated energies, and peak energy dissipation rates.
These are the first results on the fundamental properties
of the combined spatial and temporal intermittency of
energy dissipation in 3D MHD turbulence.
The primary questions addressed here for MHD turbu-

lence are also fundamental for the solar corona. In fact, our
approach has strong similarities with observational studies
of solar flares [23–32] and stellar flares [33–36], which use
the time series of x-ray and extreme UV emissions to
measure the duration, peak intensity, and fluence of flares,
from which dissipated energy is inferred. For the solar
corona, a measurement of central importance is the prob-
ability distribution for dissipated energy, due to its role in
assessing the nanoflare model for coronal heating [37,38].
This distribution exhibits a power law over 8 orders of
magnitude, with an index near −1.8, somewhat shallower
than the critical index of −2 required for nanoflares to
dominate the overall heating [39].
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that exist during the initial or final snapshots do not
significantly contribute to the statistical results; we retain
them in distributions for better statistics.
An example process, with duration τ ≈ 0.5 and 31 distinct

paths, is shown in Fig. 1. Representative states are shown
(in green) on a subdomain of the simulation grid. We also
show a schematic of the paths and interactions in the
process. The process includes a division after the structure
is stretched. A large number of paths are produced during
the final stages, as the process decays toward the threshold.
We now consider the statistical properties of the proc-

esses from the four simulations in Table I. The mean
number of states per snapshot is hNstatei ¼ f194; 288; 657;
1328g. For fixed cadence of Δt−1 ¼ 32, the mean number
of processes per eddy turnover time is Nproc ¼ f914; 1271;
4272; 11608g, strongly increasing with Re. The most
complex processes have ∼103 constituent paths. We find
a consistent asymmetry in the interactions: There are more
divisions than mergers, with a ratio Nmer=Ndiv ¼
f0.84; 0.78; 0.80; 0.82g.
We show in Fig. 2 the probability distributions for

dissipated energy E and for peak energy dissipation rate

Emax. The distribution for dissipated energy, PðEÞ, has a
power-law tail with an index near −1.75$ 0.1, which is
close to the analogous observations for total energy released
in solar flares [29,44]. The power law extends across 3 orders
of magnitude inE, fromE ≈ 10−5 up to about E ≈ 10−2. For
smaller E, the distribution is shallower and apparently
nonuniversal, likely due to dissipation-range effects and
threshold effects. With increasing Re, the power law extends
to smaller E, consistent with the longer inertial range. The
distribution for peak energy dissipation ratePðEmaxÞ exhibits
a power law with index close to −2.0$ 0.1 from Emax ≈
10−4 to Emax ≈ 10−2. Similar indices are observed in dis-
tributions for peak hard x-ray flux in solar flares (e.g.,
Ref. [44]) and for energy dissipation rates E of states [14].
The distribution for process durations τ is also shown in

Fig. 2. The durations extend to well above an eddy turnover
time, sometimes comparable to the analyzed time interval.
The distribution from τ ≈ 0.2 to τ ≈ 8 can be fit to a power
law with index near −3.2$ 0.2, somewhat steeper than the
indices ranging between −2.2 and −3.0 for solar flare
durations [23,32,44], although close to the index −3.4 for
rise times [28].

FIG. 1 (color online). States in a typical process with duration τ ≈ 0.5, shown in green on a piece of the simulation lattice (with
dimensions 0.10L⊥ × 0.14L⊥ × 0.90L⊥, without accounting for elongation of the lattice vertically). Also shown is a schematic of paths
and interactions in the process, with red lines marking the times corresponding to the shown states.

FIG. 2 (color online). The probability distributions for dissipated energy E, peak energy dissipation rate Emax, and duration τ for
Re ¼ 800 (red line), Re ¼ 1250 (blue line), and Re ¼ 1800 (green line).
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A two-zone model

“A Crab flare is a blob of particles entering a stronger 
magnetic field, along the line of sight.”

• Particles must be accelerated on gyration time 

• Flares must come from a high-sigma region
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Pulsar striped wind converts to turbulence.
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Tearing is fast

• First plasmoids forming at the wind base (thin 
current layers) 

• Corrugation of the current layers, interaction 
between them, leads to reconnection rates ~0.5 c









Turbulent striped wind

• Stripes transition to turbulence after 2 comoving 
magnetosonic wave crossing times 

• Relativistic time dilation -> turbulence transition at 
closer distance with slower wind

4

sitive to the current layer width and grid resolution, sup-
porting the view that evolution in the non-linear regime
is universal with respect to unresolved physics.

2.4. Causality

Transition to turbulence occurs when plasmoids grow
to the scale of the stripe separation �̃L. Our results from
Section 2.3 indicate this occurs (fourth column of Figure
1) after a comoving fast magnetosonic time �̃L/ṽf , that is
when causal contact between stripes is first established.
For a wind that moves with constant velocity vw, this
occurs at the radius 2

rk =
1

2
�L

vw

ṽf

 
1� v

2

wṽ
2

f/c
4

1� v

2

w/c
2

!
. (4)

As shown in Figure 2, about half the magnetic energy has
been dissipated by the time plasmoids reach the stripe
scale, so prior evolution occurs in the regime where ṽf
is only somewhat smaller than c and the flow is super-
fast magnetosonic, �̃f ⌧ � (Lorentz factors correspond-
ing to ṽf and vw). In that limit, Equation 4 gives us
rk ⇡ �2

�L. During this phase, the flow is likely to ac-
celerate outward due to loss of inward tension provided
by the toroidal magnetic field, and also by establishing
a turbulent pressure gradient. A detailed analysis along
the lines of Lyubarsky & Kirk (2001), together with a
turbulence closure of the MHD equations would thus be
necessary to determine the acceleration profile. Here, we
adopt the conservative approximation that vw appearing
in Equation 4 corresponds to the terminal wind Lorentz
factor. Transition to turbulence would thus be avoided
by causality if � were to be & 104. Faster winds would
reach the deceleration point before a signal travels be-
tween adjacent current layers, so corrugations could not
grow large enough to e↵ect mixing between them. In
Section 3 we will constrain � empirically within our in-
terpretation of the Crab flares.
The third column of Figure 1 shows our prediction

for the stripe morphology when the wind passes through
rk, that is after a comoving fast magnetosonic time has
elapsed since the onset of non-linear evolution. Beyond
a few times rk, the wind evolves as freely decaying tur-
bulence of magnetized relativistic plasma. The fully de-
veloped turbulent cascade could in principle be slowed
by transverse expansion of the flow, so we need to re-
peat the exercise of Section 2.2, now comparing the eddy
turn-over frequency !e = vA/�e with the expansion rate
!

exp

= c/r. Here, we have invoked that turbulent mo-
tions decay alongside the Alfvén speed vA (Zrake 2014).
As seen in the plasma rest frame (Figure 1), eddies are
initially isotropic and roughly the size of the comoving
stripe separation �̃L. They are thus seen in the pulsar
frame to be stretched by a factor � in the transverse di-
rection. Since we wish to compare transverse stretching
rate with the eddy frequency, we assign eddies the trans-
verse scale, �e = ��L. Keeping in mind that turbulent
cells increase in size / r due to the expansion, as well
as by inverse energy transfer (Zrake 2014; Brandenburg

2 The expression for rk in Equation 4 reflects the distance at
which two fast magnetosonic waves first meet, one propagating
downstream starting at r = 0, and another in the upstream direc-
tion from r = �L.

et al. 2015; Olesen 2015), the eddy size is parameterized
by �e = ��L(r/rk)

1+� where � � 0 determines the rate
at which turbulence increases its coherence scale due to
inverse energy transfer alone. The ratio of eddy turnover
to expansion is thus

!e

!

exp

= �

✓
�

1 + �

◆
1/2✓

r

rk

◆��

, (5)

where we have related � to the Alfvén speed and assumed
that ṽf and vw are both e↵ectively c out to rk. Thus, at
least out to a few rk, expansion can be safely neglected,
and our simulation results (which do not account for that
expansion) remain applicable.
What if turbulence evolves to increase its coherency at

the fastest rate allowed by causality? Suppose that two
fluid elements on radial trajectories with Lorentz factor �
are initially at radius r

0

and separated by an angle ✓. A
pulse of light emitted by one is first received by the other
when they have moved to a radius r

1

⇡ r

0

�2

✓

2, provided3

� � ✓

�1. By assuming that turbulence commences at
r

0

= rk and setting r

1

= rs, we determine the maximum
angular coherence scale at the termination shock to be

✓e,max

⇠
✓

rs

�L

◆
1/2

��2

. (6)

3. A MODEL FOR THE CRAB NEBULA �-RAY FLARES

Here we develop a simplistic model for the Crab Neb-
ula’s observed �-ray variability (Tavani et al. 2011; Abdo
et al. 2011; Balbo et al. 2011; Buehler et al. 2012; Stri-
ani et al. 2013; Rudy et al. 2015). We adopt a tentative
interpretation of the April 2011 event in which the rise
time ⌧

rise

⇡ 10 hr coincides with the emergence of a giant
coherent structure (or “blob”) from the upstream wind
into the post-shock flow, while the decline ⌧

dec

⇡ 2 days
is associated with the cooling time of the blob’s highest
energy particles.
We assume the shock’s kinetic structure to be medi-

ated by energy-bearing particles having Lorentz factor �,
while those of highest energy �

max

� � are only weakly
deflected through an angle ✓

def

before cooling in the post-
shock magnetic field Bs. The angular scale ✓

em

from
which photons are received is the larger of ��1

max

and ✓

def

,
and is reliably the latter. We assume that only a small
patch of the blob surface is visible, ✓

blob

> ✓

em

, so that
the flare’s inferred isotropic luminosity is independent of
✓

em

. A further assumption is that turbulence develops
similar longitudinal and transverse coherency in the pul-
sar rest frame. Though harder to justify (eddies typically
emerge from the wind pancaked by Lorentz contraction),
this condition only needs to be fulfilled intermittently
both in time and solid angle. By setting ✓

blob

= ✓e,max

(Equation 6), and rs✓blob = c ⌧

rise

⇡ 1015 cm where
rs ⇡ 3 ⇥ 1017 cm, the bulk Lorentz factor is determined
to be

� ⇡
✓

rs

c ⌧

rise

◆
1/2✓

rs

�L

◆
1/4

⇡ 2.3⇥ 103. (7)

Next, we assume that particles emerge from the wind

3 The exact answer is r
1

/r
0

= f +
p

f2 � 1 where f =
�2 (1� cos ✓) + cos ✓.
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Fig. 5.— A family of wind solutions.

Fig. 6.— A family of wind solutions.

Taken literally, the specific Poynting flux would be given
by ⇣ = (1��)⇣0. However, we can extend it to accom-
modate � > 1 if we choose instead

⇣̇ = ��̇⇣ (19)

so that magnetic energy decay is exponential rather than
linear.

3.2. Derivation of the reconnection front speeds

Evolution of the parameter � is given by

�̇ = �
d

dt

✓
1� r� � r+

r2 � r1

◆
. (20)

Here, dr1
dt = v and to linear order dr2

dt = v + �dv
dr with

� = r2 � r1. The velocity gradient dv
dr = !��3 where

! = du
dr is the acceleration rate. Meanwhile,

d

dt
r± =

v± ± vrec
1 + v±vrec

(21)

where v± = v+(r±�r1)
dv
dr . We also assume that r1+r2 =

r� + r+. To first order in ��1,

�̇1 = 2
vrec
�

�2
rec�

�1 . (22)

To second order,

�̇2 = �!��̇1 [1 + vrec (1��)] ��1 . (23)

Equation 23 slows the progress of reconnection fronts by
stretching the background flow, and is a higher order ef-
fect, being proportional to �̇ = !���2. The second order
term is negligible when � � hrec where hrec = urec/! is
the local horizon scale. Sticking to first order in ��1

a↵ords dropping any explicit reference to the absolute
length scale �, except implicitly through the pulsar ro-
tation period as in Equation 18.

3.3. Evolution of the plasmoid scale

We can also take a di↵erent route and work with the
comoving plasmoid scale `. Plasmoids grow over time
by merging with one another as a result of coalescence
instability, and they also grow due to the expansion of co-
moving volume. For the latter reason it is convenient to
utilize the plasmoid mass m as a proxy for its scale. In
three dimensions, plasmoids are cylindrical flux tubes,
with mass m ⇠ `3⇢ (assuming their length and radius
are comparable). Flux tubes are locally relaxed equilib-
ria, and thus generally helical, having comparable axial
and azimuthal field strength. Absence of net magnetic
helicity implies that left and right polarized flux tubes
exist in equal number. Pairs can join by reconnecting
their azimuthal field when their electrical current flows
in the same direction, but they only form a stable struc-
ture when their axial fields are also parallel. Thus only
half of the merging episodes (those occurring between
like polarized tubes) yield stable structures, and the to-
tal number of plasmoids s (flowing past a given point,
per unit time) decreases by a factor of four in each stage
of coalescence, sn+1 = sn/4. Stages proceed at the re-
connection (or cascade) rate

ṅ =
vrec
`

, (24)

where vrec is a fraction �rec of the local Alfvén speed
vA = (�/w)1/2. Each merging event conserves mass and
magnetic helicity, so we have mn+1 = 2mn and hn+1 =
2hn. Meanwhile, the magnetic energy per plasmoid drops
according to ✏n = hn/`n. The overall magnetic energy
per unit mass is given conveniently by �n = sn✏n/f .
When expansion is neglected (⇢̇ = 0), this heuristic

yields a decay law in which the characteristic plasmoid

3

Fig. 3.— A family of wind solutions.

separatrix uf reducing the space of positive temperature
solutions. All three speeds coincide exactly when the
condition

⌘2/3 � ⇣2/3 = 1 (15)

is met. For such degenerate solution families, the Q poly-
nomial (Equation 14) has a double root at �f = ⌘1/3 or
equivalently uf = �1/2. The only physical solution has
exactly zero temperature and coasts at the magnetosonic
speed, while those with negative temperature either ac-
celerate or decelerate toward it.

2.2. The ideal solutions

Figure 1 shows the family of ideal solutions for which
⌘ = 2000 and ⇣ = 2. Each curve represents a solu-
tion having a distinct speed at the nominal wind base
r = r0. Both branches include positive and negative
temperature solutions, drawn in solid and dashed curves
respectively. All solutions evolve toward their respective
zero temperature asymptote. Those asymptotes corre-
spond to the physical roots of the Q polynomial, which
are easily estimated here (since ⌘ � ⇣) to be usup ⇡ ⌘�⇣
and usub ⇡ ⇣/⌘. Since ⌘ and ⇣ are constant over radius,
so are the roots of Q.

2.3. The non-ideal solutions

More generally, non-isentropic flow evolves across the
⌘, ⇣ solution families. As it does so, the supersonic
asymptote changes as u̇sup ⇡ �⇣̇. As long as the non-
ideal part R remains small relative to the ideal term

Fig. 4.— A family of wind solutions.
u
rQ, the solution tracks closely to its asymptotic value
u ⇡ usup.

3. DISSIPATION PRESCRIPTIONS

3.1. Reconnection front

We adopt a model for the evolution of ⇣ in which elec-
tromagnetic power is dissipated by expanding regions of
turbulent magnetic reconnection. The boundaries of the
dissipation zones expand away from current layers at the
reconnection speed vrec, eating through the reservoir of
magnetic free energy as they go. Once the reconnection
fronts come into contact, the flow enters a state of fully
developed turbulence which mediates further dissipation.
Before causal contact can be established, the dissipation
rate is given by speed of the reconnection surfaces

v± =
d

dt
r± =

v ± vrec
1± vrecv

(16)

times the magnetic energy density of the “cold” region.
Following KS03 we define the fraction of volume enclosed
by the reconnecting surfaces as

� = 1� r� � r+
r2 � r1

(17)

where the current sheets are centered at r1 and r2, with
r2 = r1+P?v/2 being half a rotation period P? ahead of
r1. The comoving rate of expansion is found to be

�̇ =
4

P?

✓
vrec/v

1� v2recv
2

◆
��1 , (18)

Zrake & Arons (in prep)

Multi-dimensional effects modify Lyubarski & Kirk model.



Turbulent striped wind

• High mass loading (multiplicity ~ 105) still required 
for total dissipation of the AC wind 

• Growth of magnetic coherency raises interesting 
possibility for Crab flares…
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ABSTRACT

We interpret �-ray flares from the Crab Nebula as the signature of turbulence in the pulsar’s
electromagnetic outflow. Turbulence is triggered upstream by dynamical instability of the wind’s
oscillating magnetic field, and accelerates non-thermal particles. On impacting the wind termination
shock, those particles emit a distinct synchrotron component F⌫,flare, which is constantly modulated
by intermittency of the upstream plasma flow. Flares are observed when the high-energy cuto↵ of
F⌫,flare emerges above the fast-declining nebular emission around 0.1 - 1 GeV. Simulations carried out
in the force-free electrodynamics approximation predict the striped wind to become fully turbulent
well ahead of the wind termination shock, provided its terminal Lorentz factor is . 104.
Subject headings: pulsars: general — magnetohydrodynamics — magnetic reconnection — turbulence

— gamma rays: stars — stars: winds, outflows

1. INTRODUCTION

Discovery of �-ray flares from the Crab Nebula is
among the foremost contributions to recent high-energy
astrophysics. While it has now been five years since their
announcement in 2011 (Tavani et al. 2011; Abdo et al.
2011), no longer wavelength counterparts have been es-
tablished (Bietenholz et al. 2014; Kouzu et al. 2013; Bi-
etenholz et al. 2014; Rudy et al. 2015; Madsen et al.
2015), and so the active region within the nebula remains
unlocalized. The flares also present a formidable theoret-
ical challenge because their power and duration cannot
be accounted for within conventional theories of charged
particle acceleration (e.g. Blandford et al. 2015a,b). Evi-
dently, they are telling us something new — either about
the nebula’s anatomy, or the physics of strongly magne-
tized plasma, or perhaps both.
Here we suggest Crab flares are the signature of an in-

termittent pulsar wind. Seen in this way, they provide
empirical support for a turbulence resolution to the so-
called �-problem, referring to uncertainty over the mech-
anism by which the pulsar’s electromagnetic spin-down
luminosity is diverted into particles (e.g. Kennel & Coro-
niti 1984; Emmering & Chevalier 1987). Pulsar wind
plasma thus inherits spatial and temporal intermittencies
that are characteristic of relativistic turbulence (Zrake
& MacFadyen 2011, 2012; Radice & Rezzolla 2013), and
flares can be produced when exceptionally large coherent
structures transit the wind termination shock.
Our central assertion is that free energy associated

with the pulsar’s alternating current (“striped wind”)
destabilizes quickly, and is dissipated in the ensuing
turbulent cascade. This view is supported by recent
advances in the stability and reconnection processes
of strongly magnetized plasma, (Uzdensky et al. 2010;
Cerutti et al. 2014a; Sironi & Spitkovsky 2014; Guo et al.
2015; East et al. 2015; Zrake & East 2015), but di↵ers
with the conventional view that the striped wind is erased
by steady magnetic reconnection through current layers
that remain near equilibrium (Coroniti 1990; Lyubarsky
& Kirk 2001; Kirk & Skjaraasen 2003).
Essential features of a model follow from this as-

sertion. First, we envision that synchrotron radiation
is produced by supra-thermal electrons emerging from
the wind zone into the compressed downstream mag-
netic field, so that photons may exceed the classical
⇠ 100MeV limit throughout the duration of electron
cooling times. Second, we envision those electrons to
be energized by turbulent dissipation in the flow well
upstream of the wind termination shock. Finally, we at-
tribute observed �-ray variabilities to spatial intermit-
tency of the upstream electron population; flares are
seen when a gust of wind particles (henceforth a “blob”)
sweeps across the wind termination shock along the line
of sight. We will show that a model having these basic
features can account for the flare duration and energetics
without invoking explosive conversion of magnetic energy
into radiation.
In Section 2.1 we summarize previous work on states of

magnetized plasma resembling the striped wind. In Sec-
tion 2.2 we estimate that current layers in the wind suc-
cumb quickly to linear instabilities. Then in Section 2.3
we simulate their subsequent non-linear evolution in the
force-free electrodynamics approximation, finding that
stripes are fully engulfed by turbulence after about two
comoving dynamical times. In Section 2.4 we discuss
freely decaying turbulence in a relativistically expand-
ing background flow, and determine the maximum scale
of coherent structures emerging from the wind region.
In Section 3 we use those results to develop a simplistic
model for the Crab Nebula flares. The model requires
a wind Lorentz factor � ⇡ 2300, a post-shock magnetic
field strength of 655mG, and can be falsified by obser-
vation of flares about 5 times more powerful than the
April 2011 event. In Section 4 we discuss limitations of
the model and follow-up work that may validate certain
assumptions.

2. TURBULENCE TRANSITION IN THE STRIPED WIND

2.1. Free energy supply

Turbulence in the pulsar wind feeds on the oscillating
magnetic field, or “stripes”. The stripes arise by rip-
pling of the equatorial current sheet as the pulsar’s mag-
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8 light-hour coherency marginally possible if wind Lorentz 
factor ~ 103 - 104 (well mass-loaded wind).
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Fig. 3.— The quiescent Crab Nebula synchrotron spectrum,
shown together with the flaring component shortly after the peak
of the April 2011 event, and then another 2 days later.

with a power-law distribution f

flare

(�) / �

�p between �
and �

max

. We adopt the spectral index p = 3/2 found
in kinetic simulations of relativistic magnetic reconnec-
tion (Sironi & Spitkovsky 2014). The total number of
emitting particles is given by

"eṄ⌧

rise

=

Z �
max

�

f

flare

(�)d� (8)

where "e is the fraction of Ṅ that became non-thermal
within the blob. Equating the flare duration ⌧

dec

⇡
2 days with the cooling time of electrons moving with
�

max

in the post-shock magnetic field, we find Bs ⇡
1.7mG �

�1/2
max,9. The remaining free parameters are �

max

and the rate "eṄ of non-thermal particles emerging from
the wind with an angle ✓

em

around the line of sight. They
are determined by fitting Fermi-LAT data at the peak of
the April 2011 flare to the synchrotron photon spectrum
F⌫,flare of the flaring component,

F⌫,flare =

Z �
max

�

P⌫fflare(�)d� (9)

where P⌫ is the specific synchrotron power per unit
energy (Rybicki & Lightman 1979). We then evolve
f

flare

(�) by synchrotron cooling in the post-shock mag-
netic field to determine the spectrum at later times.
Figure 3 shows F⌫,flare fitted to the peak of the April

2011 flare, using Fermi-LAT data around MJD 55667
(Buehler et al. 2012), while Figure 4 shows the Fermi-
LAT photon flux light curve above 100 MeV together
with post-shock cooling of f

flare

. The best-fit magnetic
field value Bs = 655µG is somewhat higher than the
mean nebular field of 124µG (Meyer et al. 2010), but
that is not unexpected in such close proximity to the
shock. The corresponding maximum Lorentz factor is
�

max

= 7⇥109. The best-fit injection rate of non-thermal
particles is "eṄ = 2.2 ⇥ 1037 s�1, which corresponds to
an average non-thermal power supply of 5.3⇥ 1037 erg/s
throughout ⌧

rise

and within an angle ✓

blob

of the line of
sight. The former is 22% of the pulsar’s conventionally
adopted production rate Ṅ ⇠ 1038 s�1 (Rees & Gunn
1974; Coroniti 1990)4, while the latter is 11% of the

4 Particle production rates & 1040 s�1 for the Crab pulsar are
inferred assuming the nebula electron population derives directly

Fig. 4.— Decline of the second component of the April 2011 flare.
Shown is the Fermi-LAT photon flux above 100 MeV between MJD
55666 and 55674, together with the model with Bs = 655µG and
�
max

= 7⇥ 109.

isotropic pulsar spin-down power L = 4.6 ⇥ 1038 erg/s
(Komissarov 2012). A bulk Lorentz factor � ⇡ 2300 is
much smaller than the Kennel & Coroniti (1984) value
of ⇠ 106, but comparable to that of Tanaka & Takahara
(2010) who estimate � ⇡ 7⇥103. Kinetic studies of rela-
tivistic reconnection in strongly magnetized plasma agree
on values of "e ⇠ 1 (Guo et al. 2015; Sironi & Spitkovsky
2014).
If the post-shock magnetic field were to be coherent

over c ⌧

cool

⇡ 5 ⇥ 1015 cm, then particles moving with
�

max

would be deflected through an angle !g⌧cool ⇡
102 ✓

blob

. Thus downstream trajectories must be in the
Bohm limit to satisfy our assumption that ✓

em

< ✓

blob

.
However, magnetic field correlations would need to van-
ish at scales �B & 106 cm for radiation to be in the jitter
regime, ��1

max

< !g�B/c (Kelner et al. 2013).

4. DISCUSSION

We have argued that the Crab Nebula’s �-ray variabil-
ity can be induced by turbulent intermittency of the pul-
sar wind. Our analysis predicts that linear instability of
the current layers gives way to turbulence well upstream
of the wind termination shock, provided the bulk Lorentz
factor is . 104. We went on to estimate the largest spa-
tial coherency attainable by freely decaying turbulence in
the radially expanding flow, and found that the ⇠ 10 hr
rise time of the April 2011 event can be accounted for if
� ⇡ 2300. We then fit a simplistic model to the Fermi-
LAT spectrum of the flare, and determined roughly 1/10
of the pulsar’s spin-down luminosity must be channeled
into non-thermal particles to explain it.

4.1. Limitations

Our numerical treatment here was limited to a local co-
moving patch of wind plasma. A more realistic analysis
will need to account for expansion in the radial back-
ground flow, which could modify the nature of linear in-
stabilities. We have also ignored all kinetic processes,
which may complicate arguments given in Section 2.2
that linear instabilities act quickly. Still, we note that
kinetic particle-in-cell simulations (Sironi & Spitkovsky
2011; Hoshino 2012) also point to large-scale disruption

from the pulsar (Bucciantini et al. 2011).
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Fig. 3.— The quiescent Crab Nebula synchrotron spectrum,
shown together with the flaring component shortly after the peak
of the April 2011 event, and then another 2 days later.
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"eṄ⌧

rise

=

Z �
max

�

f

flare

(�)d� (8)

where "e is the fraction of Ṅ that became non-thermal
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Shown is the Fermi-LAT photon flux above 100 MeV between MJD
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isotropic pulsar spin-down power L = 4.6 ⇥ 1038 erg/s
(Komissarov 2012). A bulk Lorentz factor � ⇡ 2300 is
much smaller than the Kennel & Coroniti (1984) value
of ⇠ 106, but comparable to that of Tanaka & Takahara
(2010) who estimate � ⇡ 7⇥103. Kinetic studies of rela-
tivistic reconnection in strongly magnetized plasma agree
on values of "e ⇠ 1 (Guo et al. 2015; Sironi & Spitkovsky
2014).
If the post-shock magnetic field were to be coherent
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However, magnetic field correlations would need to van-
ish at scales �B & 106 cm for radiation to be in the jitter
regime, ��1
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< !g�B/c (Kelner et al. 2013).

4. DISCUSSION

We have argued that the Crab Nebula’s �-ray variabil-
ity can be induced by turbulent intermittency of the pul-
sar wind. Our analysis predicts that linear instability of
the current layers gives way to turbulence well upstream
of the wind termination shock, provided the bulk Lorentz
factor is . 104. We went on to estimate the largest spa-
tial coherency attainable by freely decaying turbulence in
the radially expanding flow, and found that the ⇠ 10 hr
rise time of the April 2011 event can be accounted for if
� ⇡ 2300. We then fit a simplistic model to the Fermi-
LAT spectrum of the flare, and determined roughly 1/10
of the pulsar’s spin-down luminosity must be channeled
into non-thermal particles to explain it.

4.1. Limitations

Our numerical treatment here was limited to a local co-
moving patch of wind plasma. A more realistic analysis
will need to account for expansion in the radial back-
ground flow, which could modify the nature of linear in-
stabilities. We have also ignored all kinetic processes,
which may complicate arguments given in Section 2.2
that linear instabilities act quickly. Still, we note that
kinetic particle-in-cell simulations (Sironi & Spitkovsky
2011; Hoshino 2012) also point to large-scale disruption

from the pulsar (Bucciantini et al. 2011).



More generally,
• Crab flares due to “blob” of high energy particles 

injected into stronger B field 

• Variability time ~ size of the blob 

• Radiation can exceed 100 MeV for electron cooling 
times 

• Bayesian block time-series analysis w / Jeff Scargle



Fermi-LAT spectrum
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Fig. 3.— The quiescent Crab Nebula synchrotron spectrum,
shown together with the flaring component shortly after the peak
of the April 2011 event, and then another 2 days later.
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"eṄ⌧

rise

=

Z �
max

�

f

flare

(�)d� (8)

where "e is the fraction of Ṅ that became non-thermal
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Figure 3 shows F⌫,flare fitted to the peak of the April

2011 flare, using Fermi-LAT data around MJD 55667
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LAT photon flux light curve above 100 MeV together
with post-shock cooling of f
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field value Bs = 655µG is somewhat higher than the
mean nebular field of 124µG (Meyer et al. 2010), but
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sight. The former is 22% of the pulsar’s conventionally
adopted production rate Ṅ ⇠ 1038 s�1 (Rees & Gunn
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4 Particle production rates & 1040 s�1 for the Crab pulsar are
inferred assuming the nebula electron population derives directly

Fig. 4.— Decline of the second component of the April 2011 flare.
Shown is the Fermi-LAT photon flux above 100 MeV between MJD
55666 and 55674, together with the model with Bs = 655µG and
�
max

= 7⇥ 109.

isotropic pulsar spin-down power L = 4.6 ⇥ 1038 erg/s
(Komissarov 2012). A bulk Lorentz factor � ⇡ 2300 is
much smaller than the Kennel & Coroniti (1984) value
of ⇠ 106, but comparable to that of Tanaka & Takahara
(2010) who estimate � ⇡ 7⇥103. Kinetic studies of rela-
tivistic reconnection in strongly magnetized plasma agree
on values of "e ⇠ 1 (Guo et al. 2015; Sironi & Spitkovsky
2014).
If the post-shock magnetic field were to be coherent

over c ⌧

cool

⇡ 5 ⇥ 1015 cm, then particles moving with
�

max

would be deflected through an angle !g⌧cool ⇡
102 ✓

blob

. Thus downstream trajectories must be in the
Bohm limit to satisfy our assumption that ✓

em

< ✓

blob

.
However, magnetic field correlations would need to van-
ish at scales �B & 106 cm for radiation to be in the jitter
regime, ��1

max

< !g�B/c (Kelner et al. 2013).

4. DISCUSSION

We have argued that the Crab Nebula’s �-ray variabil-
ity can be induced by turbulent intermittency of the pul-
sar wind. Our analysis predicts that linear instability of
the current layers gives way to turbulence well upstream
of the wind termination shock, provided the bulk Lorentz
factor is . 104. We went on to estimate the largest spa-
tial coherency attainable by freely decaying turbulence in
the radially expanding flow, and found that the ⇠ 10 hr
rise time of the April 2011 event can be accounted for if
� ⇡ 2300. We then fit a simplistic model to the Fermi-
LAT spectrum of the flare, and determined roughly 1/10
of the pulsar’s spin-down luminosity must be channeled
into non-thermal particles to explain it.

4.1. Limitations

Our numerical treatment here was limited to a local co-
moving patch of wind plasma. A more realistic analysis
will need to account for expansion in the radial back-
ground flow, which could modify the nature of linear in-
stabilities. We have also ignored all kinetic processes,
which may complicate arguments given in Section 2.2
that linear instabilities act quickly. Still, we note that
kinetic particle-in-cell simulations (Sironi & Spitkovsky
2011; Hoshino 2012) also point to large-scale disruption

from the pulsar (Bucciantini et al. 2011).
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Magnetic self-assembly is generic… 

Not limited to 2D or high helicity.

Inverse cascade of relativistic MHD 3

Fig. 2.— The temporal evolution of PM (k, t) at seven represen-
tative wavenumbers. Heavier ink denotes larger scales. The dashed
line shows a power law with index �4/3

small to large scales.
Indeed, as shown in Figure 2 the magnetic energy spec-

trum PM (k, t) is an increasing function of time for small
k at early times. For each wavenumber k < k0, there is
a turn-over time ⌧k when @

@tPM (k, t) switches sign. ⌧k
is thus the time when coherent magnetic field structures
of wavenumber k are fully developed, and captures the
time required for the magnetic field to assemble itself
at length scale k�1. At times t > ⌧k, the amplitude
of wavenumber k structures diminishes as a power law in
time, PM (k, t) / t� where � is measured to be�1.3±0.03.
The fiducial value of �4/3 will be adopted for simplicity.
Figure 3 shows PM (k, t) at several times throughout

the simulation. After a fraction of an Alfvén time, the
magnetic energy spectrum relaxes to a form which is well
described by a split power law

PM (k, tA) /

8
<

:

⇣
k
k0

⌘↵
k < k0

⇣
k
k0

⌘�
k � k0

. (2)

where the sub-inertial and inertial range indices are mea-
sured to be ↵ = 3.50 ± 0.04 and � = �1.91 ± 0.005
respectively. The values ↵ = 7/2 and � = �2 will be
adopted for simplicity. We note here that the magnetic
energy spectrum is found to be significantly steeper than
5/3 as is predicted in the Goldreich-Sridhar (Goldreich
& Sridhar 1995) phenomenology. 5/3 scaling has been
verified numerically in strong Alfvén wave turbulence as
well as isotropic MHD turbulence driven kinetically at
large scales (see e.g. Tobias et al. 2011, for a review).
However, it appears that isotropic, freely decaying MHD
turbulence has a slope that is significantly steeper than
is predicted by the Goldreich-Sridhar theory.
As shown in the upper panel of Figure 4, the break

in the power spectrum lies at kt / t� where � is con-
sistent with the value of �2/5 predicted by scaling ar-
guments made in Shiromizu (1998) and Olesen (1997).
Throughout the simulation, the sub-inertial and inertial
range indices remain fixed, with the peak of magnetic en-
ergy moving down and to the left on the axes of Figure
3. In other words, the evolution of the magnetic energy

Fig. 3.— PM (k, t) shown at nine representative times, including
t = 0 and proceeding through t = 22.6tA with lines of increasing
width. The dashed lines show power laws with indices 3.5 and
�2 for the scales larger and smaller than the injection scale 2⇡/k0
respectively. The dashed-dotted line shows PM (k, ⌧k) / k4/3.

spectrum is very nearly self-similar, being well-described
by

PM (k, t) = s��+�PM (ks�� , tA) (3)

where s = t/tA and � = �4/3 is the power-law in-
dex for decay at all wavenumbers larger than kt, as
shown in Figure 2. In this empirical model the mag-
netic energy at each scale larger than k�1

t grows pro-
portionally to t�(��↵)+� = t13/15 and the energy as-
sociated with peak magnetic structures, PM (kt, t) di-
minishes as t��+� = t�8/15. Those peaks trace out
PM (k, ⌧k) / k4/3 as shown in the dashed-dotted line of
Figure 3. In the limit of Lkt ! 1 the total magnetic en-
ergy EM (t) / t�(�+1)+� = t�14/15 as shown in the lower
panel of 4.

4. DISCUSSION

4.1. Comparison with other studies

Direct numerical simulation of freely decaying non-
helical MHD turbulence have been carried out by Chris-
tensson et al. (2001) and Banerjee & Jedamzik (2004)
which report selective decay and no inverse cascade.
Nevertheless, it is possible that an inverse cascade was
present, but hidden beneath the sub-inertial part of
the imposed energy spectrum, for which indices of 2
and 4 were chosen by each study respectively. It was
observed here that the locus of peak spectral energy
PM (k, ⌧k) / k4/3, so additional scale separation might
have been required in those studies for an inverse cas-
cade to become apparent. Our results are in general
agreement with those of Brandenburg et al. (2014), which
are based on direct numerical simulations of non-helical,
non-relativistic MHD turbulence done with very high res-
olution. That study reported a slightly steeper slope of
the sub-inertial range.
Inverse cascading of magnetic energy in the test-

field limit was also reported very recently by Berera &
Linkmann (2014). This study found that passive vector
fields advected within fully developed, isotropic hydrody-
namic turbulence attain coherency over increasing sptial



Taylor’s hypothesis not satisfied in 2D. 

Be careful with 2D!

3.3. Diagnostics

We define the power spectral density of the electric,
magnetic, and helicity fields, respectively, as
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where Eq, Bq, and Aq are, respectively, the electric field, the
magnetic field, and the vector potential Fourier harmonics of
wavenumber q. We normalize the Fourier harmonics so that the
volume-integrated electric and magnetic field energies UE and
UB and the magnetic helicity H are given by
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We also define the characteristic frequency of each field kE, kB,
and kH as
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where X is one of E, B, or H. The most probable wavenumber,
where PX(k) is maximal, is denoted by kX̃ .
In two dimensions, we track the “helicity mass” function

discussed in Section 2.2:

x A BA d x, 11z
3( ) ( ( ) ) · ( ) òy y= Q -

where Θ is the Heaviside step function. In practice, this
diagnostic is more easily computed as the “helicity density”
function d d y, which we calculate by binning the lattice
points according to their value of Az and assigning the weight
A B· . We also create the volume distribution d d. y by
binning points according to Az with uniform weights and the
helicity distribution over volume d d d

d
d
d

 .  .=
y y

.

4. RESULTS

Figure 1 shows the evolution of both 2D and 3D freely
decaying, force-free magnetic turbulence. Both of these
calculations are initiated in the 2D ABC state, but the one on
top takes place in a 2D domain where translational symmetry is
assumed in the z direction, and the bottom one was given a
low-level white-noise perturbation to break the z symmetry.
The left-most image shows the solution shortly after saturation
of the linear instability that was recently observed in East et al.
(2015), an overview of which is provided in Section 4.1. The
difference between the two runs is visually evident. While the
3D solution becomes increasingly smooth at late times, the 2D
one maintains a network of abrupt field reversals. These
structures are force-free rotational current layers and are
examined in depth in Section 4.4. As we will see in Section 4.2,

Figure 1. Top: 2D turbulent relaxation in force-free electrodynamics at logarithmically spaced times (t=0.08; 0.32; 1.28; 5.12). The initial condition is the α0=256
ABC field with B1=1; B2=1; B3=0 and grid resolution 30722. Shown is the out-of-plane magnetic field component scaled linearly between the initial minimum
and maximum values. The small red rectangle overlying the right-most panel is the region shown amplified in Figure 4. The end state is not a linear force-free
equilibrium. Bottom: 3D turbulent relaxation under the same conditions except that α0=16, the grid resolution is 5123, and the times t=0.625; 1.0; 3.0; 16.0 are
chosen to elucidate the sequence of decay epochs. The color mapping accomodates the instantaneous data range, as it decreases appreciably throughout the decay. The
end state is a linear force-free equilibrium with α=1.
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Pulsar striped wind converts to isotropic 
turbulence (if mass loading is high)…

Crab Flares may be attributed to large upstream coherent 
structures interacting with wind-termination shock.

2

Fig. 1.— Transition to turbulence in the pulsar striped wind. Simulations were carried out for a local patch of wind in the plasma
rest frame, using the force-free electrodynamics approximation. Shown are relief plot renderings made from two-dimensional subsets of
three-dimensional data, with the toroidal (in-page) magnetic field component in the top panel, and the poloidal (out-of-page) component in
the middle panel. The left-most column shows the initial condition given by Equation 3. The second column is shown just after saturation
of a linear instability, and subsequent columns illustrate erasure of the stripes by transition to fully developed turbulence. Since the
magnetic field weakens from left to right by turbulent dissipation, each image uses a color bar that is scaled to the instantaneous range of
magnetic field values. The bottom panel (not to scale) shows a schematic diagram of the pulsar (blue circle), rippled current sheet (blue
line), comoving simulation domain (square), and relative locations of the turbulence transition region rk and termination shock radius rs.

netic dipole vector circles its spin axis, and are generic to
plasma winds sourced by oblique rotators (Parker 1958;
Coroniti 1990; Bogovalov 1999). As seen in the local rest
frame of wind particles, they are an abundant source of
magnetostatic free energy 1. In earlier work, we found
that such “excited” states of magnetized plasma were
dynamically unstable (East et al. 2015), and promptly
discharged their free energy through a turbulent cas-
cade (Zrake & East 2015). The force-free equilibria
(J⇥B = 0) we had considered were the short-wavelength
Taylor states (Childress 1970; Dombre et al. 1986) which
have uniform torsion ↵ ⌘ J · B/B

2. Although stripes
are di↵erent in that ↵ is non-uniform (electrical current
concentrates into thin layers around which the toroidal
field switches sign), we will see in Section 2.3 that they
similarly tend toward dynamical instability.

2.2. Linear instabilities

Turbulence can be induced by saturation of any small
amplitude instability. Here, we estimate the growth
rate of linear tearing modes a↵ecting current layers (e.g.
Biskamp 1986) between domains of opposite magnetic
polarity. The upshot is that tearing modes saturate fast,

1 A system’s magnetostatic free energy is what it can dissipate
while respecting the frozen-in assumption (E · B = 0) in all but
infinitesimal volumes. Such evolution conserves the system’s ideal
topological invariants in the sense of Taylor (1974), while permit-
ting conversion of magnetic energy into bulk motions and eventu-
ally heat.

so our conclusions would not change if another insta-
bility grows faster. Current layers in high Lundquist
number plasma tend to form plasmoids (Bhattacharjee
et al. 2009; Huang & Bhattacharjee 2010; Uzdensky et al.
2010), or become strongly corrugated (Inoue 2012). Our
estimate here thus predicts how long current layers re-
main near equilibrium before such non-linear e↵ects set
in.
The fastest growing tearing mode has a wavelength

comparable to the comoving layer thickness ã, and a

growth rate c�̃

�3/2
D ã

1/2 when the plasma is hot (Zelenyi
& Krasnosel’skikh 1979), where �̃D is the relativistic De-
bye length. Current layers collapse down to microscopic
width ã = �̃D (Michel 1994), so !̃

tear

= c/ã. As mea-
sured in the pulsar frame the current layer thickness near
the light cylinder was found by Uzdensky & Spitkovsky
(2014) to be aL ⇡ 30 cm. Plasma near the base of the
wind is launched outward with a Lorentz factor �L ⇡ 200
in the case of the Crab pulsar (Lyubarsky & Kirk 2001),
so the comoving current layer thickness ã = �La is tens
of meters. The tearing rate is a factor �L slower in the
pulsar frame, and it slows further as the current layer in-

flates / r (charge density ne / r

�2 while �D / n

�1/2
e ),

!

tear

= �

�2

L

c

aL

✓
r

rL

◆�1

. (1)

Near the light cylinder, !
tear

⇠ 104 s�1. By comparison,
the Crab pulsar angular frequency ⌦ ⇡ 190. In principle
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