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Astrophysical reconnection

Solar and stellar flares

AGN (e.g., blazar) jets, radio-lobes
Gamma-Ray Bursts (GRBs)

Magnetar flares
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RHESSI
observations

e July 23 y-ray flare
(Holman, et al., 2003)

* Double power-law fit
with spectral indices:

1.5 (34-126 keV)
2.5 (126-300 keV)
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RHESSI occulted flare observations

30-50keV
17GHz

Krucker et al 2010

* Observations of a December 31, 2007, occulted flare

— A large fraction of electrons in the flaring region are part of the
energetic component (10keV to several MeV)

— The pressure of the energetic electrons approaches that of the
magnetic field

— Remarkable!



Energy release during reconnection

« The change in magnetic topology for reconnection takes
place in the “diffusion” region
— A very localized region around the x-line
— This 1s not where significant magnetic energy i1s released

* Energy release primarily takes place downstream of the x-
line where newly-reconnected field lines relax their tension

* Mechanisms for particle heating and energization can not
be localized in the “diffusion region”



Basic mechanisms for particle energy gain
during reconnection

* In the guiding center limit
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Electron heating during reconnection

e Carry out 2-D PIC simulations of electron-proton system with a weak
and strong guide fields (0.2 and 1.0 times the reconnection field)
— 819.2d. x 409.6d.
— Compare all of the heating mechanisms d =—
— Dahlin et al ‘14 Wy




Electron heating mechanisms: weak guide field

e Slingshot term dominates (Fermi reflection)
« Parallel electric field term small — a surprise

e Grad B term 1s an energy sink

— Electrons entering the exhaust where B 1s low lose energy because
L 1s conserved.
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Electron heating mechanisms: strong guide field

 Fermi and parallel electric field term dominate

— Longer current layers where E, = 0 with a guide field
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Spatial distribution of heating rate from Fermi
reflection

» Electron heating rate from Fermi reflection
— Fills the entire exhaust

— Not localized to narrow boundary layers
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Acceleration mechanism for highest energy
electrons

* Fermi reflection dominates energy gain for highest energy
electrons J
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— Where V.~V dt
e Recent simulations of pair and relativistic reconnection also
see the dominance of Fermi reflection (Guo et al *14, Sironi
and Spitkovsky “‘14)
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Transition to strong guide field reconnection

Carried out a scaling study with guide field to determine
electron acceleration mechanisms
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Electron spectral anisotropy

e The dominant acceleration mechanisms accelerate
electrons parallel to the local magnetic field — Fermi
slingshot and E,

— Extreme anisotropy in the spectrum of energetic electrons
— More than a factor of 10?

— What limits the anisotropy?

— Do not see powerlaw distributions
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What about powerlaws in low beta systems?

It has been suggested that powerlaws are produced 1n
reconnection in electron-ion systems with low initial beta

(Li et al 2015)

— The powerlaw 1s a consequence of superimposing high energy
particles within the magnetic island with the upstream distribution

— There does not appear to be a local powerlaw
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A measure of particle acceleration efficiency

* A measure of the rate of energy release and particle
acceleration is the parameter

2o, = (5+VE)s LXB

B’

— Dominantly positive and a reconnecting system and negative in a
dynamo systems

— The dominance of positive values establishes that particle
acceleration 1s a first order Fermi mechanism
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Particle acceleration in 3D reconnection

* Ina 3D system with a guide field magnetic reconnection
becomes highly turbulent

— No magnetic islands

— Chaotic field line wandering and associated particle motion

* What about particle acceleration?

Dahlinetal ’15



Energetic electron spectra in 3D reconnection

» The rate of energetic electron production 1s greatly
enhanced in 3D

— The number of energetic electrons increases by more than an order
of magnitude

— The rate of electron energy gain continues robustly at late time
with no evidence for saturation as in the 2D model. Why?
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Impact of 3-D dynamics on particle acceleration

e In 3-D field lines can wander so particles are not trapped
within 1slands

* Electrons gain energy anywhere in the reconnecting volume
where magnetic field lines are locally relaxing their tension

Electrons with y > 1.5

2D Vo
— Cp
Vo+2Cp
3D

Dahlin et al ’15




Electron spectra in 2D versus 3D

3D simulation with domain 102}
size 102.4d.x51.2d.x25.6d,

The number of energetic
electrons increases by an 107
order of magnitude 10-8)
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— High velocity electrons
continue to sample energy o)

release sites rather than being 107
trapped 1n 1slands 10|
Ion heating reduced in 3D % o
No difference between
particle acceleration 2D and 0T
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— Particle and exhaust
velocities are comparable Dahlin et al ’15



Transition from 2D to 3D reconnection

Carried out simulations with varying lengths in the out-of-
plane direction

— Sharp transition from 2D to 3D for length in out-of-plane direction
above a critical value
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An upper limit on energy gain during reconnection

* Magnetic reconnection dominantly increases the parallel
energy of particles, depending on the degree of magnetization

— Traditional limits in which particle energy gain is balanced by
synchrotron loss yield upper limits on photons of around 160MeV

— Photon energies above this are seen in the Crab flares
— Spectral anisotropy can change these limits

e An true upper limit on energy comes from a balance between
the energy gain due to the magnetic slingshot (~ y/R) and the
particle radiation due to its motion along the curved field line

(~ v*/R?) y < ( R/ Rc )1/3

— Where RC = 82 / mcz 1s the classical electron radius and R is the
field line radius of curvature.

— For the Crab flares this limit yields electron energies of 10'°eV



Fermi acceleration in contracting and merging
1slands

—

* Area of the island Lw is preserved
= nearly incompressible dynamics
« Magnetic field line length L decreases

» Parker’s transport equation
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— Only compression drives energy gain. Why?
— Parker equation assumes strong scattering = isofropic plasma

« Retaining anisotropy is critical for reconnection



Energy gain in a bath of merging islands

e Total area preserved

* Magnetic flux of largest island 1s
preserved

« Particle conservation laws
2
— Magnetic moment U =p, /2mB
— Parallel action p L
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 Field line shortening drives energy gain
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Particle acceleration in a multi-island
reconnecting system

* Average over the merging of a bath of magnetic i1slands
« Kinetic equation for f(p,P,) with {= p/p

— Equi-dimensional equation — no intrinsic scale
— powerlaw solutions
— The drive term without the loss term describes our simulations very well

— We can calculate energy gain in reconnecting systems
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Energetic particle distributions

Solutions 1n the strong drive limit — balance between drive and loss

— Typically heating time short compared with loss time

Pressure of energetic particles rises until it 1s comparable to the
remaining magnetic energy
— Equipartitian

— Powerlaw solutions for the particle flux

« Non-relativistic jN pzf(p) ~ p_3 ~ E_1°5
» Relativistic j ~ E_2

These distributions are the upper limits so that the energy integrals
do not diverge

— Harder spectra must have a limited range in energy



Powerlawspectra from reconnection

e Under what conditions do we expect

powerlaws during reconnection?
— With electron-proton reconnection in non-

.....

relativistic regime in periodic systems do
| f

not see powerlaws

* Need loss mechanism to balance source to obtain
powerlaws? .. &8 |
« Powerlaws develop in magnetically L
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— Powerlaws with indices p < 2 must have
Sironi & Spitkovsky ‘14

limited range in energy so the total

integrated energy remains finite
* Does a limited range powerlaw with index p <2

make sense?



Main Points

Solar observations suggest that magnetic energy conversion
into energetic electrons is extraordinarily efficient

Fermi reflection and EH are the main drivers of electron

acceleration during reconnection
— Strong anisotropy of the energetic particle spectrum. What limits
this anisotropy?
Multi-x-line reconnection is required to produce the
energetic component of the spectrum

— Powerlaw spectra require a loss mechanism (electron-proton)
— Powerlaw spectra seen in simulations in relativistic reconnection

» Results with spectral indices harder than 2 require further scrutiny



Main Points

The efficiency of energetic electron production in 3D
increases dramatically compared with 2D

— Electrons can wander throughout the reconnecting domain to
access sites of magnetic energy release

— No longer trapped within relaxed (contracted) magnetic islands as
in 2D
How are electrons confined within finite size regions
where magnetic energy 1s being dissipated?
— Their transit time 1s much shorter than their energy gain time

— What controls the loss time of energetic particles in reconnection?



