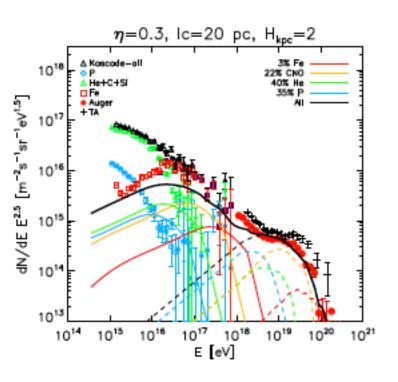
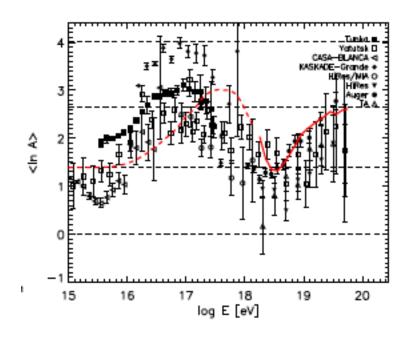

UHECR from Pulsars/Magnetars based on An "Auroral" Accelerator Model for Gamma Ray Pulsars

Jonathan Arons University of California, Berkeley



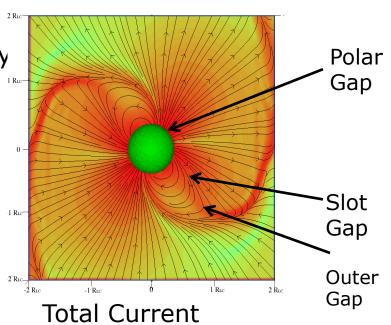

Bai & Spitkovsky 2010

Collaborators: N. Bucciantini, A. Spitkovsky

J. Arons: UHECR from Auroral PSR 2016

Heavy UHECR: a neutron star source?

Energy Spectrum GZK cutoff or source Ends above 10^{19.5} eV

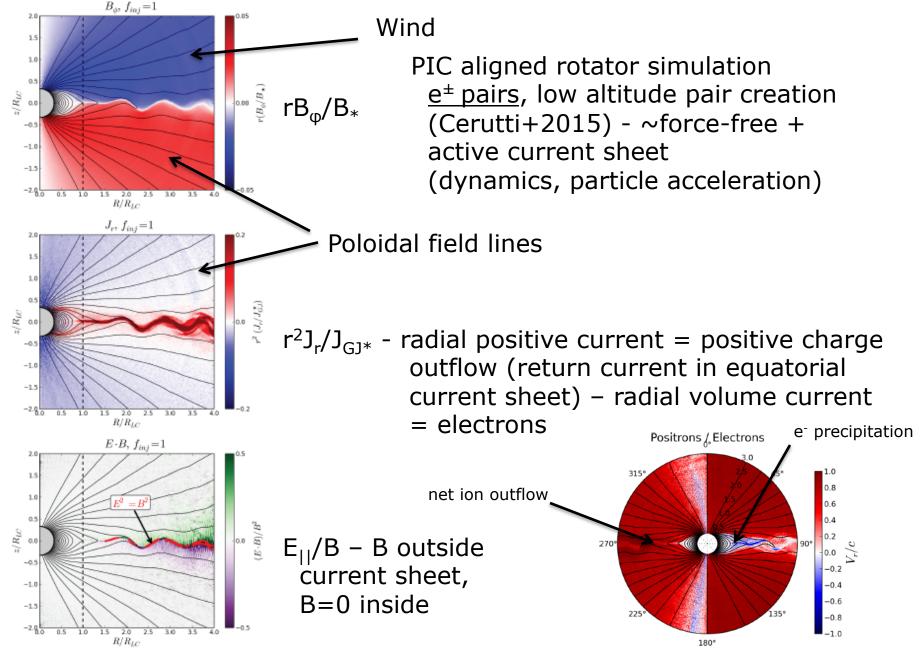

Composition; or hadronic interactions in air shower model not understood

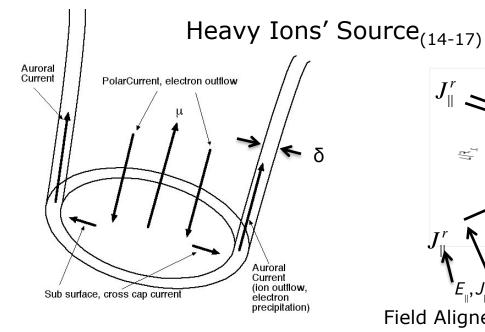
Pulsars/Nebulae can accelerate (e[±]) to PeV; have (Fe) crust/ocean

Magnetospheric Current System Requires Ion Extraction from Star (Atmosphere? Ocean? Crust?)

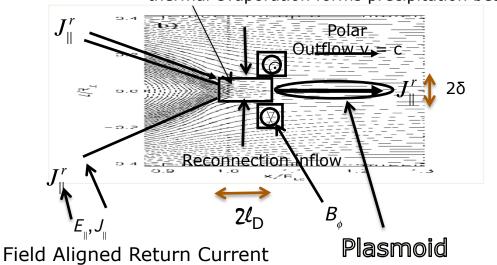
Aligned/Oblique Rotators structurally similar, $J_{cond} + J_{disp}$ (=0 in aligned)

Spitkovsky's (2006) oblique force free rotator

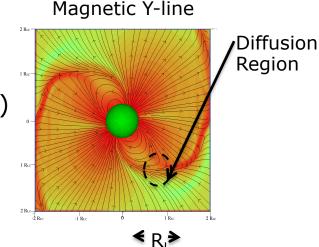



Field Lines (with real open flux)

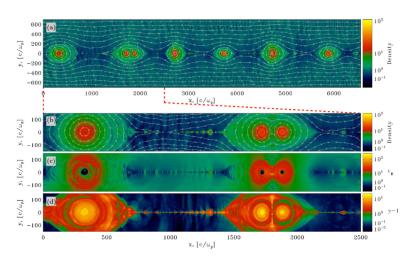
Gaps = local quasi-vacuum $E_{||}$ zones inserted by hand into vacuum B to model gamma ray emission and pair creation – by construction, gaps carry small fraction of total current $I \Rightarrow L_{gap}$ small; Accelerate test particles along B rotation \Rightarrow lighthouse \Rightarrow beamed photons (lighthouse)


$$\dot{E}_R = -I\Omega\dot{\Omega} = k\frac{\mu^2\Omega^4}{c^3}(1+\sin^2 i), \ k=1\pm0.1 \quad = I\Phi, \ \Phi = \Omega^2\mu/c^2 \qquad i=\angle(\mu,\Omega)$$

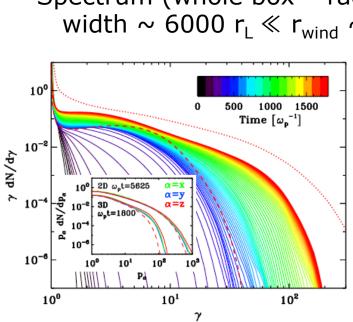
Force Free model has no accelerator: pure MHD (Alfven's ghostoangry): Gap Models: with reachumal Estave too little energy 2016



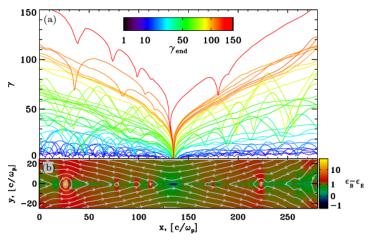
Unmagnetized Diffusion region & CS center: fed by reconnection inflow from wind thermal evaporation forms precipitation beam


Electron precipitation density_{*} = $I/r_{cap}\delta \gg GJ$ attracts upward ion beam from upper atmosphere (p+,He+,CNO+?) Or ocean (Fe+many?) Electron precipitation current $\ll I = c\Phi \approx I_{ion}$

Acceleration along <u>radial</u> $(r \gg R_L)$ X-lines of reconnecting current sheet \sim linear accelerator



Electric return **current channel** $\Omega \cdot \mu > 0$ Downward electron beam, upward ion beam


3D PIC e[±] (Sironi2014+)

Spectrum (whole box – radial, height, width $\sim 6000 \; r_L \ll r_{wind} \sim 10^9 R_L$)

Density $(a) \quad \omega_{\rm p}t = 250$ $y, [c/\omega_{\rm p}]$ $x, [c/\omega_{\rm p}]$ $y, [c/\omega_{\rm p}]$ $x, [c/\omega_{\rm p}]$ $y, [c/\omega_{\rm p}]$ $y, [c/\omega_{\rm p}]$ $y, [c/\omega_{\rm p}]$ $x, [c/\omega_{\rm p}]$ $x, [c/\omega_{\rm p}]$ $x, [c/\omega_{\rm p}]$ $x, [c/\omega_{\rm p}]$

Energy Histories

 $dN/d\gamma \sim \gamma^{-1.3} \sim monoenergetic$, highest energy particles have most energy

J. Arons: UHECR from Auroral PSR 2016

Linear Accelerator = current sheet in wind; carries electric return current

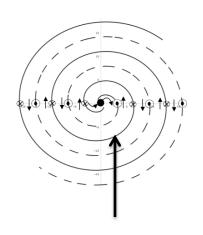
Particle rate:

$$\dot{N}_{i}(t) = \frac{I_{return}(t)}{Ze} = \frac{\Omega^{2}(t)\mu}{Zec} \propto \frac{\Omega_{i}^{2}}{1 + \frac{t}{t_{EM}(\Omega_{i})}}$$

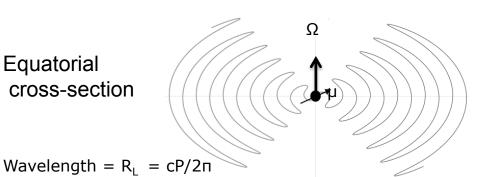
Decays as star spins down (EM after initial 10s, neutrino heated wind gone):

$$t_{EM} = \frac{I_M c^3}{2\Omega^2 \mu^2} = \frac{10 \text{ yr}}{\mu_{30}^2} \left(\frac{P}{1 \text{msec}}\right)^2$$

Maximum Energy: radial electric field E_r = reconnection = $(v_{rec}/c)B_{\phi}$


$$B_{\phi} = \Phi/r$$
, $\Phi = \mu \Omega^2/c^2 = 1.3 \times 10^{19} \ \mu_{30}/P_{msec}^2$ Volts (magnetar: $\mu_{30} \sim 10^3$)

 V_{rec} (simulations; simple 2 fluid theory) =0.8±0.2 v_A , v_A = c after initial 10s


$$\varepsilon = \gamma mc^{2} = Ze \int_{r_{\min}}^{r_{\max}} E_{r} dr = Ze \left(\frac{v_{rec}}{c}\right) \int_{r_{\min}}^{r_{\max}} \frac{\Phi}{r} dr = Ze \left(\frac{v_{rec}}{c}\right) \Phi \ln \left(\frac{r_{\max}}{r_{\min}}\right)$$

J. Arons: UHECR from Auroral PSR 2016

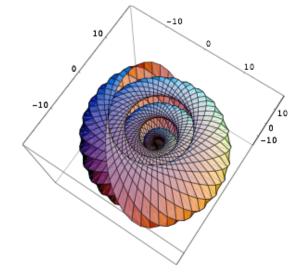
Oblique Rotators: Inner Wind Magnetically Striped

Equatorial cross-section

Meridional cross-section

Current Sheet

Dissipated in Wind Zone if


$$\Gamma_{\rm wind} \le \sigma_0 = \sqrt{\frac{\dot{E}_R}{\dot{M}c^2}} \ll 10^6$$
 for Crab Nebula, $\sigma_0 \sim 10^{3-4}$

Suggests stripes gone outside

$$r{=}\,R_{diss}{\,=\,}\,r_{min}\,\sim\,10^{6\text{--}7}R_L{\,=\,}10^{\text{--}(3\text{--}2)}\,R_{TWS}$$

 R_{TWS} = wind termination radius = r_{max}

Mass loading of millisecond PSR = ?

Outside R_{diss} , current sheet flat = linear accelerator to R_{TWS}

$$\varepsilon_{\max}(t) = \gamma mc^{2} = Ze \int_{r_{\min}}^{r_{\max}} E_{r} dr = Ze \left(\frac{V_{rec}}{C}\right) \int_{r_{\min}}^{r_{\max}} \frac{\Phi}{r} dr = Ze \left(\frac{V_{rec}}{C}\right) \Phi(t) \ln \left(\frac{r_{\max}}{r_{\min}}\right)$$

 $R_{diss} = \text{stripe dissipation radius}$ $10^7 R_L \qquad \text{based on fast reconnection of striped current sheet}$ Site of Crab gamma ray flares? – recurrence time \equiv time to restore current sheet after tearing \geq flow time from LC = R_{diss}/c ~ (Crab) $10^7 \times 2 \text{ncP}/c = 0.9 \text{ months}$ ~ observed: 4 months – 1 year Aharonian+ suggested dissipation at 30 R_L, without mechanism $R_{TWS} \sim 10^9 R_L (Crab)$

Particle Spectrum ∝ E^{-1,3} from one star too hard for UHECR Heavy ion source appealing, so Superpose many stars/galaxies with a spectrum of voltages? (Kotera) Process heavy ions (Fe?) in SNe ejecta shell? (Fang+)

Light Cylinder

BLOWOUT

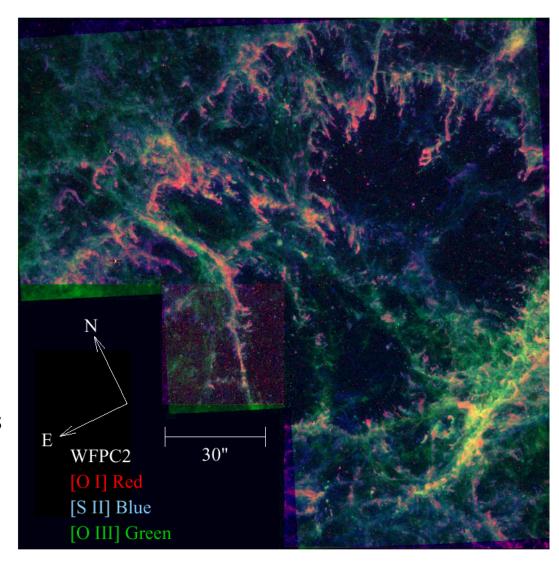
possible relation to hypernova models of GRBs fast rotating magnetic core forms in core collapse supernova; magnetic pressure explodes stellar envelope, Compton upscatter of radiation field as wind escapes creates (slow) GRB?

Rare compact objects: $v_m = 10^{-4} v_{m4} yr^{-1}$ Suggests unusual core collapse SNe - Ib/c?

Newly formed magnetic core dumps minutes - initial spin down by GW $t_{GR}(\Omega_i) \approx \frac{30}{\Omega_4^4 \left(\varepsilon/10^{-2}\right)^2} \sec,$ emission. EM energy (B fields,...) in a few emission,

$$t_{GR}(\Omega_i) \approx \frac{30}{\Omega_4^4 \left(\varepsilon/10^{-2}\right)^2} \sec$$

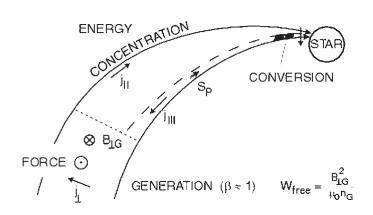
$$\Delta E_{EM}(t < t_{GR}) \approx 5 \times 10^{51} \left(\frac{\mu_{33}}{\varepsilon / 10^{-2}}\right)^2 ergs = 0.1 \left(\frac{1}{2} I \Omega_i^2\right) \quad \left(\Omega_i \sim 10^4 \text{ s}^{-1}\right)$$

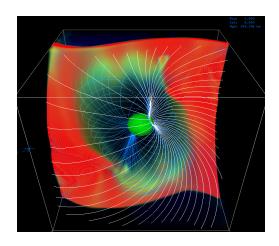

Pre SN star likely compact, with fairly short dynamical time Wheeler et al 2000 model:

$$t_d \sim 20 \frac{(R*/10^{5.5} \text{ km})^{3/2}}{\text{J. Arons}(MHEMR from Auroral PSR}$$

Injected EM Energy disrupts pre SN envelope in the dynamical time

Rayleigh-Taylor of light EM energy shreds envelope in time t_{dyn}, short compared to standard SN,


Wind then expands freely, blows bubble in ISM, expansion non-relativistic after 1 year – deposits ~2-5 x 10⁵⁰⁻⁵¹ ergs/neutron * in the ISM, limited by gravitational wave loss



Crab filaments - RT shredded ejecta (Sankrit Hester et al); also Gamma ray leakage from '87a

J. Arons: UHECR from Auroral PSR

2016

Adverisement: Special Collection (a.k.a. Special Issue) of the Journal of Plasma Physics

http://journals.cambridge.org/action/displayJournal?jid=PLA
look under "Special Collections"

Plasma Physics of Gamma Ray Pulsars and their Nebulae Arons & Uzdensky, eds multiple invited authors, most in this room at Purdue

