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Shocks & power-laws in astrophysics
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Power-laws are ubiguitous in astrophysics, most commonly associated
with shocks.

“Injection problem: What determines if a particle joins the 1% or the 99%"7
Is it always 1%7”

Is shock acceleration always there, or can only some shocks accelerate?

Can a shock become “self-made” accelerator (i.e., develop acceleration
from unfavorable conditions by back-reaction)?



Collisionless shocks from first principles

@ Full particle in cell: TRISTAN-MP code | ;. i ;.. i ... ;@.
(Spitkovsky 2008, Niemiec+2008, Stroman+2009, AMAN0 & |--i--cio-bemdeatimoondancio i deo o

@ Evolve fields via Maxwell equations

Hoshino 2007-2010, Riquelme & Spitkovsky 2010, Sironi & |--@-t--t--drncbeebondsoborodoo o
Spitkovsky 2011, Park+2012, Niemiec+2012, Guo+14,...)
@ Define electromagnetic field on a grid St i R
@ Move particles via Lorentz force el
ST A Y Y A
RN RS - P oo - :-":-"
E o

@ Computationally expensive! ® :
: a
. . B JECeEtEErE EEEEEE Foo--e-
@ Hybrid approach: dHybrid code ; ; :
Fluid electrons - Kinetic protons 'S @
(Winske & Omidi; Lipatov 2002; Giacalone et al.; Gargate [~~ """ E """ ': """ e
& Spitkovsky 2012, DC & Spitkovsky 2013, 2014) e : :
@ massless electrons formore | petl a e
5 v I i M
macroscopic time/length scales : : :




Parameter Space of shocks
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nonrelativistic
shocks

relativistic

S Solar e and ions are different
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N 107 SNRs in non-relativistic case
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most of our PIC runs are
still mildly relativistic
(v/c~0.03-0.1c)
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Outline

1) Proton injection physics
2) Electron injection physics and proton/electron ratio in CRs
3) Injection of heavy ions

4) Re-acceleration of cosmic rays
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Shock acceleration

Two crucial ingredients:

1) ability of a shock to reflect particles back into the
upstream (injection)

2) ability of these particles to scatter and return to the
shock (pre-existing or generated turbulence)

Generically, parallel shocks are good for ion and electron
acceleration, while perpendicular shocks mainly accelerate
electrons.
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Proton acceleration

Ma=3, parallel shock; hybrid simulation. Quasi-parallel shocks
accelerate ions and produce self-generated waves In the upstream
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Proton spectrum

Long term evolution: Diffusive Shock Acceleration spectrum recovered
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7 Naxwellian at ~ 0%T.;, s

First-order Fermi acceleration: f(p)o<p* 4mp2f(p)dp=Ff(E)dE
f(E)o<E-? (relativistic) f(E)o<E-'-> (non-relativistic)

CR backreaction is affecting downstream temperature

Caprioli & Spitkovsky 2014a



Acceleration in parallel vs oblique shocks
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E—

Non-Thermal

A - Pl
P e o' s Y
¥ o7 " O O E EEEm ETNARY &

_ About 1%

2 1

> accelerated

&)

g protons by

T number, what
> . .

5 Caprioli & AS, 2014 L

= O Ic1pr“|0| < S | a | that?

0 10 20 30 40
0 (deg)



Shock structure & injection - ... =

Quasiparallel shocks look like intermittent quasiperp shocks
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Injection of ions happens on first crossing due to specular reflection from
reforming magnetic and electric barrier and shock-drift acceleration.

Multiple cycles in a time-dependent shock structure result in injection into
DSA; no “thermal leakage” from downstream.




Quasi-perp shocks don’t inject protons
% M=10, Ob|ique (19=6OO) shock (Caprioli, Yi, AS ~subm.)

injection_AZfocus_60deq: t=240

v -gnét ¢ field z component, in blue. Ambient field :;ln_-.".»gth_ in red

shock estimate (red)
939
hock instantaneous (green):
956

Magnetic field intensity

1000
x1




Injection mechanism: importance of timing

Caprioli, Pop & AS 2015
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Proton injection: theory et i

o Reflection off the shock potential
barrier (stationary in the
downstream frame)

@ For reflection info upstream,
particle needs certain minimal

energy for given shock inclination; 990 1010 1030 1050
@ Particles first gain energy via Shock-drift acceleration:
shock-drift acceleration (SDA) downstream upstream Larger B Smaller B

@ Several cycles are required for
higher shock obliquities

@ Each cycle is "leaky”, not
everyone comes back for more
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@ Higher obliquities less likely to
get injected

drift along shock

Path of incoming particle




Encoun’rer with the shock barrler A
S (shock reFormlng) S I oo limenes e oo men
- o R i e e
average Yl Particles are ’
eAD| ! . advected downstream,
H T | and thermalized |
3 (overshoot) Satp Ll A
& Particles are
i R . reflected upstream,
( ~and energized via
E .V & Shock DruF’r Acc.

N ENER . AT R T S e

@ To overrun the shock, proton need a minimum Ej;, increasing with J

@ Particle fate determined by barrier duty cycle (~25%) and shock inclination
@ After N SDA cycles, only a fraction n~ 0.25N has not been advected

o For 9=45°, Ei,j~10Eo, which requires N~3 -> n~1% T"’;"



@ Time-varying potential barrier

o High state (duty cycle 25%)
-> Reflection
-> Shock Drift Acceleration

o Low-state -> Thermalization

@ P=probability of being advected

@ € =fractional energy gain/cycle
E/Eg,

Dins = 2.3mpVip = 30mec
Caprioli, Pop & Spitkovsky, 2015 18




@ Time-varying potential barrier
4

o High o be Injected, particles need to arrive §
-> R

. <| at the right time at the shock and get
e of energizatfion depends on shock
obliquity. More oblique shocks require
more cycles, and have smaller injection.
There is now an analyfic model of
Injection efficiency vs shock parameters

~J

@ Spectru

@ P=prob

@ € =fractional energy gain/cycle
E/Eg,

Dins = 2.3mpVip = 30mec
Caprioli, Pop & Spitkovsky, 2015



.

<o

~

-eleration]




Electron acceleration at parallel shocks |

Recent evidence of electron acceleration in quasi parallel shocks.

PIC simulation of quasiparallel shock. Very long simulation in 1D. . ~
. B

lon-driven Bell waves drive electron acceleration: correct polarization

lon phase space

Electron phase space
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Electron acceleration at parallel shocks

Recent evidence of electron acceleration in quasi parallel shocks.
PIC simulation of quasiparallel shock. Very long simulation in 1D.

lon-driven Bell waves drive electron acceleration: correct polarization

kY

\electon spectrun

s density }u
4 e
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10E , = p{m..)
s (B field DSA spectrum recovered in _both_

At ~ -
0 WNWN electrons and ions

_ A | l Electron-proton ratio can be
o efo S measured! Park, Caprioli, AS (2015,




Electron acceleration at parallel shocks

Multi-cycle shock-drift acceleration, with electrons returning back due to upstream ion-
generated waves.




Electron acceleration mechanism: shock drift cycles

Shock-drift

RGNS
S (f) electront

Diffusive

(h) electron2

1000 O 10002000300040005000 1000 O 10002000300040005000
X (c/wpe) X (C/wpe)

Electron track from PIC simulation.



Electron-proton ratio Kep:

Park, Caprioli, AS (2015)

electron
electron
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Electron acceleration at L-shocks |-_) 7L

60 degrees shock inclination, mi/me=100, Ma=20;

electron-driven waves upstream (Caprioli, Park, AS, in prep)
Lag,olf.(p)] at 1=225899 /w_, Log,olfslp)] at t=225899/w ,
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lons are not injected or accelerated into DSA, while electrons drive their own Bell-type
waves. Electrons are reflected from shock due to magnetic mirroring.

Recover DSA electron spectrum, 0.1-4% in energy, <1% by number.



Electron acceleration at 1 -shocks: 2D
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Low-M shocks; Whistler waves in the shock foot for Ma<mi/me.

Electron DSA! Large-amplitude Electron-driven modes! Oblique firehose?
( Guo 2014) Or whistlers?




Shock acceleration: emerging picture

Acceleration in laminar field:

quasi-parallel -- accelerate both ions and electrons
(Caprioli & AS, 2014abc; Park, Caprioli,AS 2015)

quasi-perpendicular -- accelerate mostly electrons
(Guo, Sironi & Narayan 2014; Caprioli, Park,AS in prep)
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Shock acceleration: emerging picture

Acceleration in laminar field:

quasi-parallel -- accelerate both ions and electrons
(Caprioli & AS, 2014abc; Park, Caprioli,AS 2015)

quasi-perpendicular -- accelerate mostly electrons
(Guo, Sironi & Narayan 2014; Caprioli, Park,AS in prep)
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SNR story

Nonthermally-emitting SNRs likely have
large scale parallel magnetic field (radial).
This leads to CR acceleration and field
amplification.

Locally-transverse field enters the shock,
and causes electron injection and DSA.

This favors large-scale radial B fields in
young SNRs. Polarization in “polar caps”
should be small -- field is random

Ab-initio plasma results allow to put
constraints on the large-scale picture!




' SN1006: a parallel accelerator
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["Acceleration of Nuclei |
. Heawerthén Hydrogen.’, '



Acceleration of heavy nucle

100 T T T TTTTT7

® REFRACTORIES > 1250 K
D SEMIVOLATILES 1250-875K
® VOLATILES 875- 400K
O HIGHLY-VOLATILES <400 K

L 1S 11

[H=1]

Nuclei heavier than H must be injected more
efficiently (Meyer et al 97)

1 TI]1111

Multi-species hybrid simulations.
Max energy Is proportional to charge Z;

T T TTTT]
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Most nuclei have A/Z ~ 2. Investigate also e i

- - - - 10 100
A/Z>2 for partially ionized nuclei. UASS & ~ (I

With ISM
abundances

3 4
10 10
Caprioli & AS, in prep




njectuon ot singiy-ionizea nuciel

M=10, parallel shock (Caprioli, Yi, AS in prep)

injection AZfocus 20deg_qump1000: t=30

Energy spectra
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ensity profiles: H (green), A2 (blue)

Shock estimate (red):
k=115

hock ins anlanébus?@reenk
=108

Protons — H
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Injection fraction is larger for nuclei with larger A/Z!




Injection of singly-ionized nuclel

In the absence of H-driven turbulence, heavies are thermalized far downstream

With B amplification from H, heavies are thermalized to kT=A mvg,%/2, and can
recross the shock due to their large larmor radii. More chances to scatter on H
fluctuations leads to higher “duty fraction” of the shock for larger A/Z.

Nuclei enhancement depends on A/Z and Mach number.

Caprioli, Yi, AS in grey

Injection fraction is larger for nuclei with larger A/Z!







Re-acceleration of pre-existing CRs

Add hot "CR" particles to upstream flow.

Quasi-perp shock: CRs have large Larmor radii and can recross the shock,
accelerate, and be injected into diffusive acceleration process; 10

5 4.5 4 3.5 3 5 :

Logy|E f(E)|(t = 750w, ")

P 1
I'ime w_*




Turbulence driven by reaccelerated CRs

Escaping CRs drive turbulence
field inclination

Orientation of the field at the shock

changes to regions of quasi-parallel, and
efficiency of H acceleration increases.

Pre-existing CRs improve |ocal efficiency
of the shock!

Growth time in SNR ~10yrs << age.
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Conclusions

Kinetic simulations allow to calculate particle
injection and acceleration from first principles,
constraining injection fraction

Magnetization (Mach #) of the shock and B
inclination controls the shock structure

Nonrelativistic shocks accelerate ions and
electrons in quasi-par if B fields are amplified
by CRs. Energy efficiency of ions 10-20%,

number ~few percent; Kep,~103; p spectrum @ 4

Electrons are accelerated in quasi-perp shocks,
energy several percent, number <1%. Fewer
ions are accelerated at oblique shocks.

A/Z>2 species are injected more efficiently; CR
re-acceleration may be important

Long-term evolution,
turbulence & 3D effects nee
to be explored more: more
advanced simulation
methods are coming
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