Relativistic reconnection in astroplasmas, from plasma scales to astro scales: the computational perspective

Lorenzo Sironi (Harvard → Columbia) Second PuWoRPA, May 9th 2016 with: Giannios, Komissarov, Lyutikov, Petropoulou, Porth, Spitkovsky

Hard and fast flares from relativistic flows

(1) extended power-law distributions of the emitting particles, often with hard slope

Relativistic magnetic reconnection

What is the long-term evolution of relativistic magnetic reconnection?

Dynamics and particle spectrum

Hierarchical reconnection

2D PIC simulation of $\sigma {=} 10$ electron-positron reconnection

• The current sheet breaks into a series of secondary islands (e.g., Loureiro+ 07, Bhattacharjee+ 09, Uzdensky+ 10, Huang & Bhattacharjee 12, Takamoto 13).

- The field energy is transferred to the particles at the X-points, in between the magnetic islands.
- Localized regions exist at the X-points where E>B.

<u>3D σ =10 reconnection with no guide field</u>

In 3D, the in-plane tearing mode and the out-of-plane drift-kink mode coexist.
The drift-kink mode is the fastest to grow, but the physics at late times is governed by the tearing mode, as in 2D.

The particle energy spectrum

• At late times, the particle spectrum approaches a power law $dn/d\gamma \propto \gamma^{-p}$

2D σ =10 electron-positron

3D σ =10 electron-positron

• The max energy grows linearly with time, if the evolution is not artificially inhibited by the boundaries.

(LS & Spitkovsky 14)

(LS &

Spitkovsky 14)

Particle acceleration mechanisms

Two acceleration phases: (1) at the X-point; (2) in between merging islands

(2) Fermi process in between islands

650

600

 \mathbf{x}

 (c/ω_{p})

-20

550

ISIANDS
The particles are

accelerated by a Fermi-like process in between merging islands (Guo+14, Nalewajko+15).

- Island merging is essential to shift up the spectral cutoff energy.
- In the Fermi process, the rich get richer. But how do they get rich in the first place?

(1) Acceleration at X-points

• In cold plasmas, the particles are tied to field lines and they go through X-points.

• The particles are accelerated by the reconnection electric field at the X-points (Zenitani & Hoshino 01). The energy gain can vary, depending on where the particles interact with the sheet.

• The same physics operates at the main X-point and in secondary X-points.

Plasmoids in relativistic reconnection

Plasmoids in reconnection layers

- the plasmoids/magnetic islands are over-dense, by a factor of a few.
- they are in rough equipartition of magnetic and kinetic energy.
- they move outwards at ultra-relativistic speeds.

(LS, Giannios & Petropoulou, on arXiv tonight)

Plasmoid space-time tracks

We can follow individual plasmoids in space and time.

First they grow, then they go:

• First, they grow in the center at non-relativistic speeds.

• Then, they accelerate outwards approaching the Alfven speed ~ *c*.

First they grow

• The plasmoid size w grows in the plasmoid rest-frame at a constant rate of ~0.1 c (dashed black lines), with weak dependence on magnetization.

⁽LS, Giannios & Petropoulou 16)

• The weak dependence of the growth rate on σ is consistent with the weak dependence on σ of the reconnection rate/inflow speed.

• The growth terminates when the plasmoid approaches the Alfven speed (or equivalently, its four-velocity approaches $\sim \sqrt{\sigma} c$).

Then they go

• After growing, the plasmoids are accelerated by the field line tension with a universal acceleration profile (dotted yellow lines):

 $0.1 \ x$

• The "target" four-velocity is always $\sim \sqrt{\sigma}$ c, as expected for the fastest regions of the outflow (Lyubarsky 2005).

⁽LS, Giannios & Petropoulou 16)

Particle spectrum in plasmoids

Comoving momentum spectrum in the *y* direction (i.e., transverse to the current sheet)

• The upper cutoff in momentum corresponds to a Larmor radius $r_{0y,cut} \sim 0.2 w$ regardless of the magnetization (a *confinement criterion*)

• The spectrum of large islands has the same slope as the overall spectrum from the layer.

(LS & Spitkovsky 14, see also Guo+ 14,15, Werner+ 16)

Particle anisotropy in plasmoids

Larmor radius at the comoving positron cutoff momentum in different directions

• Small islands show *z* anisotropy along the reconnection electric field at X-points. Large islands are nearly isotropic.

• By balancing the max energy from X-point acceleration with the max energy from island mergers, the transition should occur at

 $w \sim 50 \sqrt{\sigma} \, c / \omega_{\rm p}$

"Monster" plasmoids

σ=10

"Monster" plasmoids (Uzdensky+10):

• they can reach a size of ~ 0.2 L (regardless of L) and their typical recurrence time is ~ 2.5 L/c.

 the monster plasmoids contain the highest energy particles, with a Larmor radius approaching ~ 0.05 L (Hillas criterion for relativistic reconnection).

• the linear scaling between max energy and system length L can be probed only with simulations having L \gtrsim 300 $\sqrt{\sigma}$ c/ ω_p .

(LS, Giannios & Petropoulou 16)

Dependence on the guide field

Dependence on the guide field

 \odot

 \odot

For stronger guide fields, the normalization and the maximum energy are smaller, because the reconnection electric field (and so, the reconnection rate) are smaller.

Explosive relativistic reconnection

VS

The ABC of explosive particle acceleration

σ_{in} =42 L=800 c/ ω_p kT/mc²=100

ABC structures: idealized force-free geometries

- Stable for ~ 5 L/c, where L is the island size.
- Explosive evolution on dynamical timescales (~ L/c).

(Lyutikov, LS, Komissarov & Porth 16)

Mechanism of particle acceleration

⁽Lyutikov, LS, Komissarov & Porth 16)

• Most of the particles that will reach high energies are injected near the most violent phase of evolution.

• Particle injection happens in regions where E·B≠0, and particle acceleration is governed by the reconnection electric field.

Dependence on the ABC parameters

- The onset of the instability always happens at \sim 5 L/c.
- The shape of the particle spectrum is independent of kT/mc², provided σ is defined with the enthalpy and L is the same in units of the plasma skin depths.

Dependence on the ABC parameters

- The onset of the instability always happens at \sim 5 L/c.
- The shape of the particle spectrum is independent of kT/mc², provided σ is defined with the enthalpy and L is the same in units of the plasma skin depths.
- High energy cutoff grows linearly with L, if kT/mc² and σ are fixed.

Dependence on the ABC parameters

- The onset of the instability always happens at \sim 5 L/c.
- The shape of the particle spectrum is independent of kT/mc², provided σ is defined with the enthalpy and L is the same in units of the plasma skin depths.
- High energy cutoff grows linearly with L, if kT/mc² and σ are fixed.
- Harder spectra for higher σ , if kT/mc² and L/ $\sigma^{1/2}$ are fixed.

Merger of zero-current flux ropes

- Flux ropes are pushed together by hand, "eroding" the envelopes.
- Then, parallel currents are exposed, and they attract explosively.

force-free simulation at time=0, 2, 4, 6, 9

Comparison of 2D and 3D

• The 3D evolution parallels closely the 2D evolution.

Is reconnection the source of high-energy emission in relativistic astrophysical flows?

• Relativistic magnetic reconnection ($\sigma \ge 1$) in pulsar winds and relativistic astrophysical jets is an efficient particle accelerator, in 2D and 3D. In 3D, the drift-kink mode is unimportant for the long-term evolution.

Relativistic reconnection can efficiently produce non-thermal particles, in the form
of a power-law tail with slope between -4 and -1 (harder for higher
magnetizations), and maximum energy growing linearly with time.

• Plasmoids generated in the reconnection layer are in rough energy equipartition between particle and magnetic energy. They grow in size near the center at a rate ~0.1 *c*, and then accelerate outwards up to a four-velocity $\sim \sqrt{\sigma}$.

• "Monster" plasmoids of size ~0.2 L are generated once every ~2.5 L/c, their particle distribution is quasi-isotropic and they contain the highest energy particles.

• Explosive reconnection driven by large-scale stresses is fast (~ few dynamical times), efficient and can produce hard spectra, in both 2D and 3D.