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Hard and fast flares from relativistic flows

(1) extended power-law distributions of the emitting particles, often with hard slope
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Relativistic magnetic reconnection
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What is the long-term evolution of relativistic magnetic reconnection?




Dynamics and particle spectrum



Hierarchical reconnection

2D PIC simulation of 0=10 electron-positron reconnection

2D o0=10 with no guide field w t=45
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(LS & Spitkovsky 14)

» The current sheet breaks into a series of secondary islands (e.g., Loureiro+ 07, Bhattacharjee+
09, Uzdensky+ 10, Huang & Bhattacharjee 12, Takamoto 13).

* The field energy is transferred to the particles at the X-points, in between the magnetic islands.

* Localized regions exist at the X-points where E>B.



10 reconnection with no quide field
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e In 3D, the in-plane tearing mode and the out-of-plane drift-kink mode coexist.

* The drift-kink mode is the fastest to grow, but the physics at late times is governed by
the tearing mode, as in 2D.




The particle energy spectrum

* At late times, the particle spectrum approaches a power law dn/dyocy=?

2D 0=10 electron-positron 3D 0=10 electron-positron
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e The max energy grows linearly with time, if the evolution is not artificially
inhibited by the boundaries. T R
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Particle acceleration mechanisms



The highest energy particles

c=10 @ t=720

T

150 o)

1060

50 /\_/J\
Q0 | . X 1 . . . 1 . X X L . . . 1 . . .

G090

10°

&
10t E
=
10°
_ 0
0 200 400 600 800
X » [e/e] (LS & Spitkovsky 14)

Two acceleration phases: (1) at the X-point; (2) in between merging islands



(2) Fermi process in between islands

o, t=459
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accelerated by a Fermi-like
process in between

* The particles are

merging islands (Guo+14,
Nalewajko+15).

e Island merging is
essential to shift up the
spectral cutoff energy.

e |n the Fermi process,
the rich get richer. But
how do they get rich in
the first place?



(1) Acceleration at X-points
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Spitkovsky 14)
e In cold plasmas, the particles are tied to field lines and they go through X-points.

e The particles are accelerated by the reconnection electric field at the X-points

(Zenitani & Hoshino 01). The energy gain can vary, depending on where the particles
interact with the sheet.

e The same physics operates at the main X-point and in secondary X-points.



Plasmoids in relativistic reconnection



Plasmoids in reconnection layers
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» the plasmoids/magnetic islands are over-dense, by a factor of a few. A

e they are in rough equipartition of magnetic and kinetic energy. arXiv tonight)
» they move outwards at ultra-relativistic speeds.



Plasmoid space-time tracks

0=10 L~3600 c/wp, electron-positron

We can follow individual
plasmoids in space and time.

First they grow, then they go:

* First, they grow in the center
at non-relativistic speeds.

* Then, they accelerate
outwards approaching the
Alfven speed ~ c.
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(LS, Giannios & Petropoulou, on arXiv tonight)



First they grow

e The plasmoid size w grows in the plasmoid rest-frame at a constant rate of ~0.1 ¢
(dashed black lines), with weak dependence on magnetization.
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e The growth terminates when the plasmoid approaches the Alfven speed
(or equivalently, its four-velocity approaches ~\o C).



Then they go

e After growing, the plasmoids are accelerated by the field line tension with a
universal acceleration profile (dotted yellow lines):
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e The “target” four-velocity is always ~Vo c, as expected
for the fastest regions of the outflow (Lyubarsky 2005).
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Particle spectrum in plasmoids

Comoving momentum spectrum in the y direction ;m>;>;§§\@\i;;{§ﬂ$ =
(i.e., transverse to the current sheet) 3;::;::-%:::» —

* The upper cutoff in momentum corresponds to a Larmor radius 70y, cut ™~ 0.2w
regardless of the magnetization (a confinement criterion)

e The spectrum of large islands has the same slope as the overall
spectrum from the layer.

(LS & Spitkovsky 14, see also Guo+ 14,15, Werner+ 16)




Particle anisotropy in plasmoids

Larmor radius at the comoving positron cutoff
momentum in different directions
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e Small islands show z anisotropy along the reconnection
electric field at X-points. Large islands are nearly isotropic.

e By balancing the max energy from X-point
acceleration with the max energy from island
mergers, the transition should occur at

w ~ 50 /0 ¢c/wy
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“Monster” plasmoids

“Monster” plasmoids (Uzdensky+10):

e they can reach a size of ~0.2 L
(regardless of L) and their typical
recurrence time is ~ 2.5 L/c.

Max Size [L]

e the monster plasmoids contain the
highest energy particles, with a Larmor
radius approaching ~ 0.05 L (Hillas

8 10 1¢ criterion for relativistic reconnection).
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e the linear scaling between max energy
and system length L can be probed only
with simulations having L = 300 Vo c/wy.

(LS, Giannios & Petropoulou 16)



Dependence on the guide field



Growth Rate (Tcwi)
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Dependence on the guide field

3D 0=10 electron-positron

0.10
v. /C
0.08
0.06

0.04

0.02

0.00L

2D 0=10 electron-positron

B,/B,=0.0
B,/B,=0.1
B,/B,=0.3
B,/B,=0.6
— B,/B,=1.0

0.10[
v./c "

0.08

0.06

0.04

0.02

0.00

131

©
©

For stronger guide fields, the normalization and the maximum energy are smaller,
because the reconnection electric field (and so, the reconnection rate) are smaller.



Explosive relativistic reconnection
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The ABC of explosive particle acceleration
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e Stable for ~ 5 L/c, where L is the island size.

e Explosive evolution on dynamical timescales (~ L/c).

2_002 (Lyutikov, LS, Komissarov & Porth 16)



Mechanism of particle acceleration
Oin=42 L=800 c/wp kT/mc?=cold
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(Lyutikov, LS, Komissarov & Porth 16)

e Most of the particles that will reach high
energies are injected near the most violent
phase of evolution.

 Particle injection happens in regions
where E-B#0, and particle acceleration is
governed by the reconnection electric field.




Dependence on the ABC parameters

* The onset of the instability always happens at ~ 5 L/c.

» The shape of the particle spectrum is independent of kT/mc?, provided o is defined
with the enthalpy and L is the same in units of the plasma skin depths.
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Dependence on the ABC parameters

* The onset of the instability always happens at ~ 5 L/c.

» The shape of the particle spectrum is independent of kT/mc?, provided o is defined
with the enthalpy and L is the same in units of the plasma skin depths.

 High energy cutoff grows linearly with L, if kT/mc? and o are fixed.
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Dependence on the ABC parameters

* The onset of the instability always happens at ~ 5 L/c.

» The shape of the particle spectrum is independent of kT/mc?, provided o is defined
with the enthalpy and L is the same in units of the plasma skin depths.

 High energy cutoff grows linearly with L, if kT/mc? and o are fixed.

» Harder spectra for higher o, if kT/mc? and L/g'? are fixed.
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Merger of zero-current flux ropes

* Flux ropes are pushed together by hand, “eroding” the envelopes.

e Then, parallel currents are exposed, and they attract explosively.

force-free simulation
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Comparison of 2D and 3D
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e The 3D evolution parallels closely the 2D evolution.




Is reconnection the source of high-energy
emission in relativistic astrophysical flows?

« Relativistic magnetic reconnection (0=1) in pulsar winds and relativistic

astrophysical jets is an efficient particle accelerator, in 2D and 3D. In 3D, the drift- ;
kink mode is unimportant for the long-term evolution.

* Relativistic reconnection can efficiently produce non-thermal particles, in the form —
of a power-law tail with slope between -4 and -1 (harder for higher
magnetizations), and maximum energy growing linearly with time.

» Plasmoids generated in the reconnection layer are in rough energy equipartition
between particle and magnetic energy. They grow in size near the center at a rate
~0.1 ¢, and then accelerate outwards up to a four-velocity ~Vo.
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- “Monster’ plasmoids of size ~0.2 L are generated once every ~2.5 L/c, their
particle distribution is quasi-isotropic and they contain the highest energy particles.

» Explosive reconnection driven by large-scale stresses is fast (~ few dynamical

Tf;times), efficient and can produce hard spectra, in both 2D and 3D.



