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✴Our present understanding of merging binary NSs

✴Anatomy of the GW signal

✴Role of B-fields and EM counterparts
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The equations of numerical relativity
Rµ⌫ � 1

2
gµ⌫R = 8⇡Tµ⌫ , (field equations)

rµT
µ⌫ = 0 ,

(cons. energy/momentum)

rµ(⇢u
µ) = 0 ,

(cons. rest mass)

p = p(⇢, ✏, Ye, . . .) , (equation of state)

(Maxwell equations)

Tµ⌫ = T fluid
µ⌫ + T

EM

µ⌫ + . . .

r⌫F
µ⌫ = Iµ , r⇤

⌫F
µ⌫ = 0 ,

In vacuum space times the theory is complete and the 
truncation error is the only error made: “CALCULATION”

(energy �momentum tensor)
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µ⌫ + T

EM

µ⌫ + . . .

r⌫F
µ⌫ = Iµ , r⇤

⌫F
µ⌫ = 0 ,

In non-vacuum space times the truncation error is the only 
error that is measurable: “SIMULATION”
It’s our approximation to “reality”: improvable via microphysics, 
magnetic fields, viscosity, radiation transport, ...

(energy �momentum tensor)



The two-body problem in GR
•For BHs we know what to expect: 
  BH + BH             BH + GWs 

•For NSs the question is more subtle: the merger leads to an 
hyper-massive neutron star (HMNS), ie a metastable equilibrium: 

  NS + NS         HMNS + ... ?         BH + torus + ... ?         BH

•HMNS phase can provide strong and clear information on EOS 

•BH+torus system may tell us on the central engine of GRBs

Abbott+ 2016



Animations: Breu, Radice, LR

M = 2⇥ 1.35M�

LS220 EOS



“merger           HMNS           BH + torus”

Quantitative differences are produced by:
- differences induced by the gravitational MASS: 

a binary with smaller mass will produce  a HMNS further away 
from the stability threshold and will collapse at a later time  



Broadbrush picture

proto-magnetar? FRB?



“merger           HMNS           BH + torus”

Quantitative differences are produced by:
- differences induced by the gravitational MASS: 

a binary with smaller mass will produce  a HMNS further away 
from the stability threshold and will collapse at a later time  

- differences induced by MAGNETIC FIELDS:
the angular momentum redistribution via magnetic braking or 
MRI can increase/decrease time to collapse; EM counterparts!

- differences induced by RADIATIVE PROCESSES:
radiative losses will alter the equilibrium of the HMNS 

- differences induced by MASS ASYMMETRIES:
tidal disruption before merger; may lead to prompt BH

- differences induced by the EOS:
stiff/soft OESs will have different compressibility and 
deformability, imprinting on the GW signal



How to constrain the EOS
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Anatomy of the GW signal
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Inspiral: well approximated by PN/EOB; tidal effects important

Anatomy of the GW signal
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Merger: highly nonlinear but analytic description possible

Anatomy of the GW signal



Anatomy of the GW signal
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post-merger: quasi-periodic emission of bar-deformed HMNS
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Anatomy of the GW signal
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Extracting information from the EOS
Takami, LR, Baiotti (2014, 2015), LR+ (2016)
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There are lines! Logically not different from 
emission lines from stellar atmospheres

Takami, LR, Baiotti (2014, 2015), LR+ (2016)
Extracting information from the EOS



A new approach to constrain the EOS
Oechslin+2007, Baiotti+2008, Bauswein+ 2011, 2012, Stergioulas+ 2011, Hotokezaka+ 2013, Takami 
2014, 2015, Bernuzzi 2014, 2015, Bauswein+ 2015, LR+2016…



A new approach to constrain the EOS
Oechslin+2007, Baiotti+2008, Bauswein+ 2011, 2012, Stergioulas+ 2011, Hotokezaka+ 2013, Takami 
2014, 2015, Bernuzzi 2014, 2015, Bauswein+ 2015, LR+2016…



Quasi-universal behaviour
f1 identification of PSDs is 
delicate, since created in 
short time window.
Spectrograms help the 
identification and results of 
other groups (Bernuzzi+ 
2015, Foucart+ 2015) confirm 
quasi-universality.

Despite different claims, 
universality not lost at very 
low (1.2 M⦿), very high (1.5 
M⦿) masses (LR+ 2016)
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Correlations with stellar 
properties (Love number) 
have been found also for f2 
and f2-0 peak (Takami+ 2015, 
Bernuzzi+ 2015, LR+2016)

Quasi-universal or not? The case for f2
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These correlations are weaker but equally important.
Despite its complexity, a complete analytical description 
of pre- and post-merger signal is possible.



An example: start from equilibria

Assume that the GW 
signal from a binary 
NS is detected and 
with a SNR high 
enough that the two 
peaks are clearly 
measurable.
Consider your best 
choices as candidate 
EOSs



An example: use the M(R,f1) relation

The measure of the 
f1 peak will fix a 
M(R,f1) relation and 
hence a single line in 
the (M, R) plane.
All EOSs will have 
one constraint 
(crossing)



An example: use the M(R,f2) relations

The measure of the f2 
peak will fix a relation 
M(R,f2,EOS) for each 
EOS and hence a 
number of lines in the 
(M, R) plane.
The right EOS will 
have three different 
constraints (APR, 
GNH3, SLy excluded)



An example: use measure of the mass

If the mass of the 
binary is measured 
from the inspiral, an 
additional constraint 
can be imposed.
The right EOS will 
have four different 
constraints. Ideally, a 
single detection 
would be sufficient.



This works for all EOSs considered
In reality things will be 
more complicated. The 
lines will be stripes; 
Bayesian probability to 
get precision on M, R.
Some numbers: 
•at 50 Mpc, freq. 
uncertainty from Fisher 
matrix is 100 Hz

•at SNR=2, the event rate 
is 0.2-2 yr-1for different 
EOSs.



The role of magnetic fields



•can B-fields be detected during the inspiral?

Most simulations to date make use of ideal MHD: 
conductivity is infinite and magnetic field simply advected. 
You can ask some simple questions.

•can B-fields be detected in the HMNS? 

•can B-fields grow after BH formation?

Ideal Magnetohydrodynamics



Waveforms: comparing against magnetic fields
Compare B/no-B field:

•the evolution in the inspiral is 
different but only for ultra large 
B-fields (i.e. B~1017 G). For 
realistic fields the difference is 
not significant.

•the post-merger evolution is 
different for all masses; strong B-
fields delay the collapse to BH 

However,  mismatch must 
computed using detector 
sensitivity



O[hB1 , hB2 ] �
⇤hB1 |hB2⌅�

⇤hB1 |hB1⌅⇤hB2 |hB2⌅

⇤hB1 |hB2⌅ � 4⇥
� ⇥

0
df

h̃B1(f)h̃�
B2

(f)
Sh(f)

To quantify the differences and determine whether detectors 
will see a difference in the inspiral, we calculate the overlap

where the scalar product is

In essence, at these res:
O[hB0 , hB ] � 0.999

B � 1017 Gfor

Influence of B-fields on inspiral 
is unlikely to be detected

Can we detect B-fields in the inspiral?



Animations:, LR, Koppitz

Typical evolution for a magnetized binary 
(hot EOS) M = 1.5M�, B0 = 1012 G



MHD instabilities and B-field amplifications

(Baiotti+2008)

•at the merger, the NS create a strong shear layer which could lead to 
a Kelvin-Helmholtz instability; magnetic field can be amplified



MHD instabilities and B-field amplifications

4 GIACOMAZZO ET AL.

Figure 3. Evolution of the mean value of the magnetic field when the subgrid
model is implemented (black solid line) and when it is not (blue dashed line).
The vertical dashed line shows the time of merger (when the NS cores col-
lide). While in a “standard” simulation, i.e. a simulation where the subgrid
model is not implemented, the magnetic field grows by only ⇠ 1 order of
magnitude, in the simulation implementing the subgrid model the magnetic
field grows up to ⇠ 1016G and it saturates when reaching equipartition with
the kinetic energy of the fluid in the turbulent regions.

equatorial plane of the rest-mass density ⇢, of |r⇥ v| (top-
left panel), of �w (top-right panel), of S

subgrid

(bottom-
left panel), and of the magnetic energy density b

2 (bottom-
right panel). In the last panel we compare in particular the
magnetic energy density between a “standard” evolution (left
side) and the case in which the subgrid model is implemented
(right side). From these figures one can see that the regions
where S

subgrid

is non zero and the magnetic field is ampli-
fied are indeed those where the Kelvin-Helmholtz instability
is more active (compare also with Price & Rosswog 2006 and
Baiotti et al. 2008). In those regions indeed both the vorticity
(|r ⇥ v|) and �w are much larger than zero and have their
maximum values. Note also that the vorticity is quite large
also in regions outside the central region. The choice of our
parameters in equation 6 is such that those regions are ex-
cluded, since the turbulence there, which is anyway smaller
than in the central regions, is due to the interaction with the
artificial atmosphere.

In figure 2 we show how the amplification changes with
resolution. We reran the same model with one higher res-
olution (�x = 0.12 ⇡ 180m) and two lower resolutions
(�x = 0.20 ⇡ 300m and �x = 0.24 ⇡ 360m). In fig-
ure 2 we plot the evolution of the magnetic energy and while
the lowest resolution run (red dotted line) shows only a mod-
est increase due to just two orders of magnitude amplifica-
tion in the magnetic field, the other three resolutions show a
much larger increase. In particular the two highest resolution
runs produce the same magnetic energy (and the same mag-
netic field values) indicating that saturation has been reached.
We note that this is the first time that such saturation level is
reached in a BNS simulation. Previous GRMHD simulations
were not able to amplify the magnetic field more than ⇠ 1

order of magnitude at merger and only the Newtonian sim-
ulations by Price & Rosswog (2006) showed large magnetic
field amplifications, but no saturation was reached and differ-
ent values were obtained for different resolutions.

Figure 4. Evolution of the magnetic energy when the subgrid model is im-
plemented (black solid line) and when it is not (blue dashed line). The ver-
tical black dashed line represents the time of merger of the two NS cores.
The red-dotted line represents instead the integral of �w computed where
Ssubgrid > 0. The values of E�w at t < 4ms are due to the artificial
shocks that develop on the NS surfaces during the inspiral (due to the fact
that we evolve our NSs using an ideal fluid EOS and that our NSs do not have
a solid crust). As one can easily see, the values of E�w during the first part
of the inspiral are at least ⇠ 2 orders of magnitude below those reached dur-
ing merger. Moreover, they do not affect the evolution of the magnetic field
as one can see both from this figure (the magnetic energy is constant as in the
standard case) and from figure 3, where the mean value, as well as the maxi-
mum (not shown), of the magnetic field does not grow during the inspiral and
it is identical to the value in the standard run (i.e, when the subgrid model is
not used).

5. LOCAL OR GLOBAL MAGNETIC FIELD AMPLIFICATION?

In figure 3 we plot the weighted-average of the magnetic
field amplitude:

B

mean

⌘
R
⇢BdVR
⇢dV

, (8)

dV being the proper volume. The black solid lines represent
the evolution of B

mean

when the subgrid model is used, while
the blue dashed line the “standard” evolution. In both cases
we used our fiducial resolution (�x = 0.15 ⇡ 220m). First
of all, while the maximum of the magnetic field saturates to
⇠ 10

17

G when the subgrid model is used, its mean value
saturates to ⇠ 10

16

G. This is a clear indication that dur-
ing the evolution the strong magnetic field generated in the
turbulent regions expands and covers a large portion of the
HMNS formed after the merger. The magnetic field amplifi-
cation is therefore not killed during the merger, but it survives
and may considerably affect the post-merger evolution (Gia-
comazzo et al. 2011). The blue dashed line represents instead
the mean value of the magnetic field when the subgrid model
is not used. In this case the magnetic field grows only by one
order of magnitude as seen in previous simulations (Giaco-
mazzo et al. 2009; Giacomazzo et al. 2011; Rezzolla et al.
2011; Kiuchi et al. 2014). By taking into account properly the
amplifications due to the subgrid scale turbulence, the mag-
netic field is amplified by ⇠ 4 orders of magnitude with re-
spect to what can be afforded by current resolutions. We ex-
pect indeed that even without our subgrid model one should
be able to obtain such large fields when employing sufficiently
large resolutions in order to reach saturation (which may not
happen for �x & 0.1m).

(Giacomazzo+2014)

•at the merger, the NS create a strong shear layer which could lead to 
a Kelvin-Helmholtz instability; magnetic field can be amplified

•sub-grid models suggest B-field grows to 1016 G (Giacomazzo+2014)

•low-res simulations don’t show exponential growth (Giacomazzo+2011) 
high-res simulations show increase of ~ 3 orders of mag (Kiuchi+2015)

(Kiuchi+ 2015)

growth rate not 
saturated at res. 
of 17 m!



MHD instabilities and B-field amplifications

•differentially rotating magnetized fluids develop the MRI 
(magnetorotational instability;Velikhov 1959, Chandrasekhar 1960)

•the MRI leads to exponential growth of B-field and to an outward 
transfer of angular momentum: responsible for accretion in discs 

•overall, consensus MRI can develop in HMNS (Siegel+2013,Kiuchi+2014)

•degree of amplification is unknown: 2-3 or 5-6 orders of magnitude? 
What about resistivity? (Kiuchi+2015, Obergaulinger+2015)
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t ~15ms

Animations:, LR, Koppitz



J/M2 = 0.83 M
tor

= 0.063M� t
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LR+ 2011

These simulations have shown that the merger of a 
magnetised binary has all the basic features behind SGRBs



•Ideal MHD is a good approximation in the inspiral, but not 
after the merger; match to electro-vacuum not possible.

•Main difference in resistive regime is the current, which is 
dictated by Ohm’s law but microphysics is poorly known. 

• We know conductivity    is a tensor and proportional to 
density and inversely proportional to temperature.

� ! 1 ideal-MHD (IMHD)

� ! 0 electrovacuum
� 6= 0 resistive-MHD (RMHD)

Dionysopoulou, Alic, LR (2015)

�

J i = qvi +W�[Ei + ✏ijkvjBk � (vkE
k)vi] ,

• A simple prescription with scalar (isotropic) conductivity:

Resistive Magnetohydrodynamics

phenomenological prescription 

� = f(⇢, ⇢min)



Dionysopoulou, LR



RMHDIMHD



NOTE: the 
magnetic jet 
structure is 
not an outflow. 
It’s a plasma-
confining 
structure.

In IMHD the 
magnetic jet 
structure is 
present but 
less regular.

IMHD



NOTE: the 
magnetic jet 
structure is 
not an outflow. 
It’s a plasma-
confining 
structure.

In RMHD the 
magnetic jet 
structure is 
present from 
the scale of the 
horizon (res.:   
h ~150m).

RMHD
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Results from other groups (IMHD only)

Figure 2 plots the magnetic-field energy as a function
of time for H4B15 runs, H4B14d70, and H4B16d70. Soon
after the onset of the merger, the magnetic-field energy is
steeply amplified because the KH vortices develop in

the shear layer. The growth rate is higher for the higher-
resolution runs, because the growth rate of the KH
instability is proportional to the wave number and hence
the smaller-scale vortices have the larger growth rate. We
analyze the maximum magnetic-field strength and plot the
amplification factor in the merger as a function of Δx7 in
the lower panel of Fig. 2. This clearly shows that the
amplification factor depends on the grid resolution but not
on the initial magnetic-field strength. This is consistent
with the amplification mechanism due to the KH vortices
and qualitatively consistent with the local shearing-box
simulation in Ref. [22]. The magnetic-field energy at
t − tmrg ≈ 5 ms in the high-resolution run is 40–50 times
as large as that of the low-resolution run.
In the HMNS stage, the magnetic-field strength grows

significantly in the high- and middle-resolution runs but not
in the low-resolution run. We analyze the field amplifica-
tion by foliating the HMNS in terms of the rest-mass
density, i.e., calculating the magnetic-field energy for ρ1 ≤
ρ ≤ ρ2 varying ρ1 and ρ2. The left panel of Fig. 3 plots
magnetic-field energy of a radial component for H4B15
runs with ρ1 ¼ 1011 g=cm3 and ρ2 ¼ 1012 g=cm3. We find
that it grows in the middle- and high-resolution runs but
not significantly in the low-resolution run. We also find
the high- and middle-resolution runs satisfy the criterion
λφMRI=Δx7 ≥ 10 where λφMRI is the MRI wavelength of the
fastest growing mode for the toroidal magnetic field,
whereas the low-resolution run does not satisfy this
criterion.
We fit the growth rate of the magnetic-field energy by

∝ e2σðt−tmrgÞ for 8≲ t − tmrg ≲ 14ms for the high-resolution
run and find that σ ≈ 140 Hz (for the middle-resolution run,
it is ≈130 Hz for 8≲ t − tmrg ≲ 16 ms) which is several
percents of the rotational frequency. This frequency agrees
approximately with that of the nonaxisymmetric MRI [23].
The right panel of Fig. 3 plots the magnetic-field energy

FIG. 1 (color online). Snapshots of the density, magnetic-field strength and magnetic-field lines for H4B15d70 at t − tmrg ≈ 0.0 ms
(left panel), at t − tmrg ≈ 5.5 ms (middle panel), and at t − tmrg ≈ 38.8 ms (right panel). tmrg is a time when the amplitude of the
gravitational waves becomes maximum. The left, middle, and right panels show the configuration just after the onset of the merger, for
the HMNS phase, and for a BH surrounded by an accretion torus, respectively. In each panel, the white curves are the magnetic-field
lines. In the left panel, the cyan represents the magnetic fields stronger than 1015.6 G. In the middle panel, the yellow, green, and dark
blue represent the density iso-surface of 1014, 1012, and 1010 g=cm3, respectively. In the right panel, the light and dark blue are the
density iso-surface of 1010.5 and 1010 g=cm3, respectively.
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FIG. 2 (color online). (Top) The total magnetic-field energies as
a function of time for H4B15 runs with three grid resolutions
(B15-70m, B15-110m, B15-150m), for H4B14d70 (B14-70m),
and for H4B16d70 (B16-70m). The thin vertical lines denote the
formation time of the BH. EB is calculated by a volume integral
only outside the BH horizon. (Bottom) The dependence of the
amplification factor of the maximum toroidal magnetic field in
the merger on the grid resolution for all the models.
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With due differences, other groups confirm this picture.



✴Modelling of binary NSs in full GR is mature: GWs from the 
inspiral can be computed with precision of binary BHs.

✴ GW spectrum shows clear peaks; some are ”quasi-universal”.

✴If observed, post-merger signal will set tight constraints on EOS.

✴B-fields unlikely to be detected in the inspiral but important 
after the merger: lead to instabilities and EM counterparts.

✴ Magnetic jet structure develops, both in IMHD and RMHD; an 
outflow is possible but not observed in general.

Conclusions

Progress has been huge and general picture is reasonable.
“Details”(turbulence, B-field amplification, dynamo,central engine) much harder. 


