Particle Acceleration in Two- and
Three-dimensional Magnetically-dominated
Reconnection

Fan Guo, Theoretical Division
Los Alamos National Laboratory

Collaborators: Hui Li, Bill Daughton (LANL)
Xiaocan Li (UAH),Yi-Hsin Liu (NASA Goddard)

Second Purdue Workshop on Relativistic Plasma Astrophysics

Department of Physics, Purdue University, West Lafayette, IN
May 9,2016

AAAAAAAAAAAAAAAAAA




Qutline

Particle Acceleration in Magnetic Reconnection Layers

We focus on understanding the primary acceleration

mechanism and formation of power-law distributions
in kinetic simulations

Plasma dynamics in 2D and 3D reconnection
Features of energetic particle distribution
Diagnostics for understanding particle acceleration
Analysis for formation of power-law distributions
Summary



2D Magnetic Reconnection
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3D Magnetic Reconnection
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Relativistic reconnection
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« 8 billion cells, 2 trillion particles tw,e = 17
using 100k cores on blue waters



Energy spectra from 2D and 3D PIC S|mulat|ons
JoR %* N |
|02
4 '\
© "\ 00
| O-6 - 0=100 | 5@\)‘
---- <D _ 200 ||
- N wt=100 :
|O8 Lol . e il PR T BT 4l
02 1O | OV 10! 102
’Y_

103

Guo et al. 2014 PRL, 2015 ApJ, 2016 PoP



4096 x 2048 x 2048 cells
~ 5.2 x 10°“ particles track ~ 10° particles




Energy distribution for different magnetization
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The additional turbulence does not strongly
modify nonthermal acceleration.



Acceleration mechanism & Power law distribution
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Many 2D studies ...

Fermi/Betatron accelerations

Curvature/grad-B drift
motion transverse to B

> Emotional — —u X B/C

Direct acceleration

Particle move along B
or in weak B

> Enonideal =K +u X B/C



Acceleration mechanism & Power law distribution
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Many 2D & 3D studies ...

We track a large number of particle trajectories, and
® |dentify their acceleration pattern
® Statistically calculate several important quantities
e accelerationrate < de > /dt
e drift motion, Up and contribution to acceleration /CIUD 2
* magnetic field and electric fields at particle positions
By, Bl uxBs Bl nonideal

® Add additional test-particle to probe acceleration mechanism

only experience L, « B




Fermi Acceleration Pattern
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Fermi acceleration is still operating in 3D simulation
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Diagnostics for understanding primary acceleration

Evaluate exact expression for energy gain of all particles:
energy change = q;v - E = qju ) +q;vy - Ky

Also evaluate energy gain from guiding center approximation

V=Vp+V,

energy change = g; / (Vewro + Vvg) - E dt

Dominant acceleration term is from the curvature drift
for anti parallel reconnection

YUy
Vo) = 3 b x (b-V)Db]
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The acceleration is dominated
by energy gain through
curvature drift motion

Fermi acceleration formula
agrees with the acceleration
by curvature drift motion.

= (P 2 )
At =L, /v,
a = Av/(vAt)



Acceleration mechanism

Fermi/Betatron accelerations

Emotz’onal — —Uu X B/C

Direct acceleration

Enonideal = E 4 u X B/C

Evaluating /qv - &/ from different electric fields
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Fermi acceleration dominates for antiparallel reconnection.

Direct acceleration is important for strong guide field case.

2D and 3D simulations show similar features
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Power-law formation
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Fokker-Planck Equation for understanding nonthermal distribution
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Power-law formation

A (a) | Q9
l l lvin“'?-/A/\(Eiec/BO |O )
Tinj~Lz Vin) . T
'\ Z-E-. 4
L | o> 210
e T~ " I0¢
T T T |O'8 Thermal—;‘-__:
v 102 100 102 0%
v-1
8f | 0 %f o finj f Oe ( L)
| - — = aTesc
ot 0Os \ Ot Tinj  Tesc ot ¢ Joce
- 2N,
fle,t) = T2 \feem B/2HBal axp(_cet)
24\7’?7 ] _
| ”J) 1+ [r(3/2+,3( m) I 3/2+,B)( )]




New simulation and analysis for power-law formation

In a 2D PIC simulation, add a test-particle component without
feedback. The component only experience Eigea=-uxB field.
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Summary and Several take-aways

2D and 3D kinetic simulations for relativistic magnetic
reconnection show that the reconnection layer is dominated by
development of flux ropes.

Despite turbulence in the reconnection layer, nonthermal particles
are efficiently generated and form power-law distributions.

Using a number of diagnostics, we show the contributions from
different acceleration mechanism. For anti-parallel case, the
acceleration is dominated by Fermi acceleration, and this can lead
to power-law distribution. Acceleration by parallel electric field is
important for reconnection with a strong guide field.

The acceleration mechanism and power-law formation are quite
robust and general.



