Electrodynamics of Accreting Millisecond Pulsars

ApJ 822, 33 / arXiv:1507.08627

Kyle Parfrey Lawrence Berkeley National Laboratory

In collaboration with Anatoly Spitkovsky & Andrei Beloborodov

Purdue Workshop on Relativistic Plasma Astrophysics II, May 10, 2016

Observational puzzles

torques on accreting neutron stars

neutron star jets

Fender+ 2004

8 arcsec

(0.6 light years)

Millisecond Pulsar Families

radio

nuclear-powered

Watts 2012

accretion-powered

transitional

Papitto+ 2013

Global magnetospheric geometry

Closed...

Ghosh & Lamb 1978

...or open?

Aly 1980

- 1. Disc exerts torques on the star via the field lines
- 2. Radio jet may be driven by the stellar rotation + open magnetic flux

Field lines can be opened by disc

Twisting/winding causes field lines to open radially

Lynden-Bell & Boily 1994

open field model for accreting star

Lovelace, Romanova, Bisnovatyi-Kogan 1995

steady-state solution at fixed twist; Keplerian disc

Uzdensky, Koenigl, Litwin 2002

MHD simulations

opening + reconnection: flaring

funnel flows & accretion torque

Kato, Hayashi, Matsumoto 2004

Millisecond pulsars: relativistic effects

- 1. All previous simulations were non-relativistic
- 2. Coronae/magnetospheres were heavy and fairly (numerically) diffusive

Explore relativistic regime with thinner discs

& lighter, nearly dissipationless coronae

use broken force-free electrodynamics & PHAEDRA spectral code KP, Beloborodov, Hui 2012

"broken": FFE + causal resistive corrections

KP 2016, in prep

Isolated Pulsars 101

Spin-down luminosity

$$L = \frac{\mu^2 \Omega^4}{c^3} \left(1 + \sin^2 \chi \right)$$
$$\approx \frac{2}{3c} \Omega^2 \psi_{\text{open},0}^2$$

Gruzinov 05, Spitkovsky 06 Contopoulos 05

torque: $N = -L/\Omega$

Contopoulos, Kazanas, Fendt 99

Aligned axes

$$\chi = 0$$

Simulation set up

Solve Maxwell's equations with current J

Dynamic Corona

Nearly ideal: $4\pi\sigma_0 = 2 \times 10^5 \, c/r_*$

$$\boldsymbol{J} = \boldsymbol{J}_{\mathrm{FFE}} + \mathrm{resistive}$$
 corrections

$$\frac{4\pi}{c} \mathbf{J} = \nabla \cdot \mathbf{E} \frac{\mathbf{E} \times \mathbf{B}}{B^2 + \tilde{E}^2} + \left[\frac{\mathbf{B} \cdot \nabla \times \mathbf{B} - \mathbf{E} \cdot \nabla \times \mathbf{E} + \gamma \mathbf{E} \cdot \mathbf{B}}{1 + \gamma \eta} \right] \frac{\mathbf{B}}{B^2}$$

implemented via dynamic resistivity:
$$\eta=\eta_0+\eta_1\left|rac{m{J}_{\mathrm{FFE}}\cdot m{B}}{B^2+E^2}
ight|$$

Kinematic Disc

 α -disc model: $\alpha_{\rm SS}=0.1$ ${\rm Pr_m}=1$

$$v_{\hat{r}} = \alpha_{\rm SS} \left(\frac{h}{r}\right)^2 v_{\rm Kepler}$$
 $v_{\hat{\phi}} = v_{\rm Kepler}$

$$4\pi\sigma = \left[\alpha_{\rm SS}(h^2/r)v_{\rm Kepler}\right]^{-1} \operatorname{Pr_m} c^2$$
$$\sim 2 \times 10^3 \, c/r_*$$

$$m{J} = \Gamma \sigma \left[m{E} + m{v} imes m{B}/c - (m{v} \cdot m{E}) m{v}/c^2
ight] \ +
ho_{
m e} m{v}$$

Field lines: dragged in or "pushed" out?

Get nearly the same final steady state when disc has $v_r = 0$

$$v_r$$
 from $lpha$ -disc model $v_r=0$ v_s -disc model v_s -disc model

Estimate outward field line speed

resistive annihilation of the radial field: $v_{
m resist} pprox rac{
u_{
m m}}{h} an heta_{
m B}$

therefore
$$\frac{v_{\mathrm{accrete}}}{v_{\mathrm{resist}}} pprox \frac{h}{r} \frac{\mathrm{Pr_m}}{\tan \theta_{\mathrm{B}}}$$

angle at which field

lines enter disc

So for thin discs can ~ neglect disc accretion velocity

Taking stock — a toy model

Approximate all spin-down torque as coming from open field lines

KP, Spitkovsky, Beloborodov 2016

But how much flux is opened? Expect $\psi_{\mathrm{open}} \sim \frac{r_{\mathrm{LC}}}{r_{\mathrm{m}}} \psi_{\mathrm{open}}$

Simple model for torques

Isolated pulsar:
$$L_0 = -N_0\Omega = \mu^2 \frac{\Omega^4}{c^3} \approx \frac{2}{3c}\Omega^2 \psi_{\mathrm{open},0}^2$$

Model for open flux:
$$\psi_{\mathrm{open}} = \zeta \frac{r_{\mathrm{LC}}}{r_{\mathrm{m}}} \psi_{\mathrm{open},0}$$

Torque:
$$N_{
m down,open} = \zeta^2 \left(rac{r_{
m LC}}{r_{
m m}}
ight)^2 N_0$$

$$N_{\rm tot} = \begin{cases} \dot{M} \sqrt{GM r_{\rm m}} - \zeta^2 \frac{\mu^2}{r_{\rm m}^2} \frac{\Omega}{c}, & r_{\rm m} < r_{\rm co} \\ -\zeta^2 \frac{\mu^2}{r_{\rm m}^2} \frac{\Omega}{c}, & r_{\rm co} < r_{\rm m} < r_{\rm LC} \\ -\mu^2 \frac{\Omega^3}{c^3}, & r_{\rm m} > r_{\rm LC}. \end{cases}$$

total spin-down torque
vs
magnetospheric

radius

fraction of spin-down torque applied by open field lines

Effective flux-opening efficiency

Found using

$$\zeta = \left(\frac{R_{\text{mag}}}{R_{\text{LC}}}\right) \sqrt{\frac{N_{\text{down}}}{N_0}}$$

where N_{down} is the *total* spin-down torque^{*}

model provides good estimate for comparing to observations

^{*} for open-flux torque, multiply by (Nopen/Ndown)^{1/2}

Torque models: 500 Hz, 108 G star

KP, Spitkovsky, Beloborodov 2016

relating
$$r_{
m m}=\xi r_{
m A}$$
 where Alfvén radius $r_{
m A}=\left(\frac{\mu^4}{2GM\dot{M}^2}\right)^{1/7}$

Jet power — if open flux is collimated

15

Scale with open flux in same way: $L_{\rm j}=\zeta^2\left(\frac{r_{
m LC}}{r_{
m m}}\right)^2L_0$

20

Application 1: Torques on AMSPs

Test torque models when get a magnetic moment estimate via spin measurements during multiple outbursts

For reasonable parameters, can explain lack of detectable spin-up during outbursts of

SAX J1808.4-3658

 $\xi < [0.65, 0.61, 0.55]$

for $\zeta = [1.0, 0.9, 0.8]$

Haskell & Patruno 2011

XTE J1814-338*

* assuming B $\sim 10^8$ G

 $\xi < [0.72, 0.67, 0.61, 0.56]$

for $\zeta = [1.0, 0.9, 0.8, 0.7]$

No enhanced/anomalous spin-down needed for

XTE J1751-305

Papitto+ 2008, Riggio+ 2011

IGR J00291+5934

Patruno 2010, Hartman+ 2011,

Papitto+ 2011

Application 2: Spin equilibrium

Spin-up from $r_m = \text{Spin-down on open flux}$

$$\dot{M}\sqrt{GMr_{\rm m}} = -\zeta^2 \left(\frac{r_{\rm LC}}{r_{\rm m}}\right)^2 N_0$$

$$\nu_{\text{eqlm}} = 956 \,\zeta^{-2} \xi^{5/2} \left(\frac{\mu}{10^{26} \,\text{G cm}^3} \right)^{-4/7} \\ \times \left(\frac{M}{1.4 \,M_{\odot}} \right)^{1/7} \left(\frac{\dot{M}}{10^{-10} \,M_{\odot} \,\text{yr}^{-1}} \right)^{2/7} \,\text{Hz}$$

In spin equilibrium:

$$\frac{r_{\rm m}}{r_{\rm LC}} = 2^{-1/2} \frac{\xi^{7/2}}{\zeta^2}$$

To see channeled accretion:

$$r_{\rm m} > r_*$$

Max spin for accretion-powered MSPs:

$$\nu_{\text{max}} = 3374 \, \zeta^{-2} \xi^{7/2} \left(\frac{r_*}{10 \, \text{km}} \right)^{-1} \, \text{Hz}$$

Independent of magnetic moment and accretion rate!

Application 3: Jets

Sco X-1, Cir X-1 —
$$L_j > 10^{35}$$
 erg/s

Fomalont+ 2001, Fender+ 2004

Model:
$$L_{\rm j} = 4.6 \times 10^{35} (\zeta/\xi)^2 \, {\rm erg \, s^{-1}}$$

$$\mu = 10^{26} \; \mathrm{G}$$
 for $\nu = 300 \; \mathrm{Hz}$ $\dot{M} = 0.5 \, \dot{M}_{\mathrm{Edd}}$

Sco X-1

$$L_{
m j} \propto \dot{M}^{4/7}$$
 — similar to Aql X-1 [modulo L_j(L_R)]

not similar to 4U 1728-34

Soft State Jet Quenching

Black hole binaries: jets are shut off in the bright, thermal-disc state

May explain why see soft state quenching in some NS binaries

e.g. Aql X-1 Tudose+ 2009, Miller-Jones+ 2010

but not others (most?) Migliari & Fender 2006

 \longrightarrow critical μ for $r_{
m m}
ightarrow r_*$ at $\dot{M}_{
m Edd}$

$$\mu_{\rm crit} \sim {\rm few} \times 10^{26} {\rm G}$$

Summary

- Differential rotation between star & disc may open nearly all the disccoupling magnetic flux
- ▶ If opening is efficient, significant power can be tapped by high-spin, strongly magnetised objects e.g. millisecond pulsars
- May be relevant for setting the torque on accreting MSPs in outburst, their spin distribution, and jets from high-spin neutron stars
- ▶ Can transitional MSPs help untangle some of the relationships between magnetic moment, accretion rate, torque, and radio emission?
- ▶ ApJ 822, 33 analytic model & comparison to observations