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Observational puzzles

Giacconi+ 1971
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torques on accreting 
neutron stars

spin cutoff of millisecond 
X-ray pulsars

Chakrabarty 2008

neutron star jets
Fender+ 2004

Cir X-1 : 𝛤 > 15!



Millisecond Pulsar Families
radio accretion-powered

nuclear-powered transitional

Basko & Sunyaev ’76

X-rays from  
accretion column

Watts 2012 Papitto+ 2013

Quiescence

Active



Global magnetospheric geometry
Closed… …or open?

Ghosh & Lamb 1978 Aly 1980

1. Disc exerts torques on the star via the field lines 
2. Radio jet may be driven by the stellar rotation + open magnetic flux



Field lines can be opened by disc

Uzdensky, Koenigl, Litwin 2002Lovelace, Romanova, Bisnovatyi-Kogan 1995

Twisting/winding causes field 
lines to open radially
Lynden-Bell & Boily 1994

60º

steady-state solution 
at fixed twist; Keplerian disc

open field model for 
accreting star



MHD simulations
opening + reconnection: flaring

Hayashi, 
Shibata, 
Matsumoto 
1996 

funnel flows & accretion torque

Romanova+ 2002

axial magnetised jet

Colour: plasma 𝛽
𝛽 = 1 contour

Ustyugova+ 2006

Colour: 𝜌 

Kato, Hayashi, Matsumoto 2004



Millisecond pulsars: relativistic effects

1. All previous simulations were non-relativistic 
2. Coronae/magnetospheres were heavy and fairly (numerically) diffusive

Explore relativistic regime with thinner discs

& lighter, nearly dissipationless coronae

use broken force-free electrodynamics & PHAEDRA spectral code
KP, Beloborodov, Hui 2012

“broken”: FFE + causal resistive corrections
KP 2016, in prep



Isolated Pulsars 101

Aligned axes 
𝜒 = 0
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Gruzinov 05, Spitkovsky 06 
Contopoulos 05

Contopoulos, Kazanas, Fendt 99



Simulation set up
Solve Maxwell’s equations with current J

Dynamic Corona Kinematic Disc

Nearly ideal: 𝛼-disc model:

v�̂ = vKepler
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rLC: light cylinder

rco: corotation radius

imposed disc: v = vr + vKep

nearly force-free corona

rm: magnetospheric radius
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Torques on the pulsar
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Movie: black & red
α = 0.1

α = 0.4

α = 0.1, disc 4 x thickness
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Field lines: dragged in or “pushed” out?
Get nearly the same final steady state when disc has vr = 0

vr  from 𝛼-disc model

vr = 0

N
spindown

/N
0

74.5
74.2

N0: torque on equivalent 
isolated pulsar

Estimate outward field line speed
resistive annihilation of the radial field:

therefore

So for thin discs can ~ neglect disc accretion velocity

angle at which field 
lines enter disc

vaccrete
vresist

⇡ h

r

Prm
tan ✓B

vresist ⇡
⌫m
h

tan ✓B



Taking stock — a toy model
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KP, Spitkovsky, Beloborodov 2016

Approximate all spin-down torque  
as coming from open field lines

But how much flux is opened?  Expect  
open

⇠ r
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open,0



Simple model for torques
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Isolated pulsar:

Model for open flux:

Torque:
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using flux distribution 
from isolated pulsar
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fraction of spin-down 
torque applied by 

open field lines 
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Effective flux-opening 
efficiency
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where Ndown is the total 
spin-down torque*

model provides good 
estimate for comparing to  
observations 

for open-flux torque, 
multiply by (Nopen/Ndown)1/2

*



Torque models: 500 Hz, 108 G star
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(a) Previous models, ξ = 0.5

Rappaport et al. (2004)
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Ghosh & Lamb (1979)
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Jet power — if open flux is collimated

Lj = ⇣2
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Scale with open flux in same way:

Zanni & Ferreira 2013
colour: mass density



Application 1: Torques on AMSPs

SAX J1808.4-3658

For reasonable parameters, can explain lack of detectable 
spin-up during outbursts of 

XTE J1814-338*

Haskell & 
Patruno 2011 

No enhanced/anomalous spin-down needed for
XTE J1751-305

IGR J00291+5934

Papitto+ 2008, Riggio+ 2011

Patruno 2010, Hartman+ 2011,  
Papitto+ 2011

Test torque models when get a magnetic moment estimate via spin 
measurements during multiple outbursts

⇠ < [0.65, 0.61, 0.55]

⇠ < [0.72, 0.67, 0.61, 0.56]

for ⇣ = [1.0, 0.9, 0.8]

for ⇣ = [1.0, 0.9, 0.8, 0.7]* assuming B ~ 108 G



Application 2: Spin equilibrium
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To see channeled accretion:
rm > r⇤

Max spin for accretion-powered MSPs:

Independent of magnetic moment and accretion rate!



Papitto+ 2014

νmax gives AMSP cut-off?

nuclear sources similar 
if mag. moments not 
much smaller?

radio pulsars slower due 
to strong spin-down 
during RLDP?

e.g. Tauris 2012

⌫eqlm(µ, Ṁ,M) — gives flat-ish distribution?



Application 3: Jets

Sco X-1, Cir X-1 — Lj > 1035 erg/s 

Lj = 4.6⇥ 1035(⇣/⇠)2 erg s�1Model: 

for ⌫ = 300 Hz

Ṁ = 0.5 ṀEdd

Lj / Ṁ4/7 — similar to Aql X-1 [modulo Lj(LR)]
— not similar to 4U 1728-34 

Fomalont+ 2001, Fender+ 2004

µ = 1026 G

Sco X-1   

Fomalont+ 2001



Soft State Jet Quenching

May explain why see soft state  
quenching in some NS binaries

e.g. Aql X-1 Tudose+ 2009, Miller-Jones+ 2010 

but not others (most?) Migliari & Fender 2006

critical μ for                  at             rm ! r⇤ ṀEdd

µcrit ⇠ few ⇥ 1026 G

Plant+ 2014

Black hole GX339-4
Black hole binaries: jets are shut off 
in the bright, thermal-disc state



Summary

‣ Differential rotation between star & disc may open nearly all the disc-  
coupling magnetic flux 

‣ If opening is efficient, significant power can be tapped by high-spin, strongly 
magnetised objects — e.g. millisecond pulsars 

‣ May be relevant for setting the torque on accreting MSPs in outburst, their 
spin distribution, and jets from high-spin neutron stars 

‣ Can transitional MSPs help untangle some of the relationships between 
magnetic moment, accretion rate, torque, and radio emission? 

‣ ApJ 822, 33 — analytic model & comparison to observations


