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we identify as the e↵ective scale of resistivity. The satu-
ration process begins at ever-earlier times with increas-
ing numerical resolution. This reflects the fact that dur-
ing the kinematic phase, magnetic energy exponentiates
on a time scale controlled by shearing at the smallest
scales. In numerically converged runs, full saturation
occurs with EM ⇡ 0.6EK and is characterized by scale-
by-scale super-equipartition, with EK ⇡ 4EM at all but
the largest scale.

3.2. Numerical convergence

The same driven turbulence model was run through
magnetic saturation at resolutions 163, 323, 643, 1283,
2563, and 5123. Another model at 10243 was run through
the end of the kinematic phase, but further evolution was
computationally prohibitive. Fig. 1 shows the develop-
ment of BRMS , EM , and EK as a function of time at
each resolution.
We find that su�ciently resolved runs (� 5123) attain

mean magnetic field strengths of 1016G within two large
eddy rotations. All models with resolutions � 323 even-
tually attain mean fields of & 3⇥ 1016G. The saturated
field strength increases until resolution 2563. We find
that the kinematic growth rate is higher at each higher
resolution, while the time-scale for the non-linear satura-
tion converges at 2563 to roughly five large-eddy rotation
times, or about 0.5ms for the physical parameters of bi-
nary neutron star mergers.
In order to quantitatively describe the time develop-

ment of magnetic energy EM (t), we describe it with an
empirical model,
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(3)
where the 6 parameters (summarized in Table 1) are

obtained by a least-squares optimization. Fig. 3 shows
the empirical model given in Equation 3 applied to a
representative run at 1283. The first phase, t < t1 is a
startup transient, and lasts until the hydrodynamic cas-
cade is fully developed at t1 ⇡ teddy. The kinematic
dynamo phase lasts between t1 and tnl, during which the
magnetic energy exponentiates on the time scale ⌧1. At
tnl, the smallest scales reach kinetic equipartition and the
growth rate slows. In the final stage, EM asymptotically
approaches Esat on the time-scale ⌧2. We define the dy-
namo completion time tsat as tnl + ⌧2. Fig. 4 shows the
best-fit Esat, tsat, and ⌧1 as a function of the resolution.
The magnetic energy Esat at dynamo completion shows

signs of converging to a value of 0.6EK by resolution
5123. The time scale ⌧2 on which the magnetic energy
asymptotically approaches Esat is consistently ⇡ 3teddy
at di↵erent resolutions. The dynamo completion time
tsat is numerically converged at ⇡ 5teddy by 2563. The
best-fit kinematic growth time follows a power law in the
resolution, ⌧1 / N�0.6. This is consistent with the value
of �2/3 expected if the dynamo time is controlled by
shearing at the smallest scale, the cascade is Kolmogorov
(i.e. u` / `1/3), and the viscous cuto↵ `⌫ occurs at a
fixed number of grid zones. In that case, ⌧1 ⇠ t⌫ /
`2/3⌫ ⇠ N�2/3.

Figure 4. Top: Convergence study of the kinematic dynamo
growth time ⌧1 (blue) and the dynamo completion time tsat(green)
defined as tnl + ⌧2. Bottom: Convergence study of the best-
fit model parameter Esat expressed as the ratio of magnetic to
kinetic energy E
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⇡ 0.6. Nevertheless, at intermediate wave-
lengths E
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(k) ⇡ 4. As shown in Figure 2, the largest
scales remain kinetically dominated. This indicates the suppres-
sion of coherent magnetic structure formation near the integral
scale of turbulence.

3.3. Power spectrum of kinetic and magnetic energy

The time development of kinetic and magnetic energy
power spectra has been studied for a single run with
resolution 5123. We present three-dimensional, spher-
ically integrated power spectra with the dimensions of
ergs/cm3/m�1, defined as
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where the Newtonian versions of kinetic and magnetic
energy are appropriate since the conditions are only
mildly relativistic. The definitions in Equations 4 sat-
isfy

R
P (k)dk = hEi for PK and PM . Figure 2 shows

the power spectrum of kinetic and magnetic energy at
various times throughout the growth and saturation of
magnetic field. During the kinematic phase, the kinetic
energy has a power spectrum PK(k) / k�5/3 consistent
with the Kolmogorov theory for incompressible hydro-
dynamical turbulence, while PM (k, t) / et/⌧1k3/2 consis-
tent with Kazenstev’s model. PM (k) maintains the same


