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Fast flares in relativistic flows

(" crab Nebula ) (" TeV blazars )
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Time - MJD53944.0 [min]

Doubling time of ~8 hrs, with peak photon

~10 minutes flares on top of a high-state

flux ~30 times larger than the average
J J “envelope” that lasts for ~days



Hard spectra in relativistic flows

(" crab Nebula ) (" TeV blazars )
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(Buehler et al. 12)
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Energy (TeV)

After correcting for EBL absorption,
the inferred TeV spectra are

extremely hard (requiring p<2).



Dissipation in relativistic outflows
( 3C 120 )

C Crab Nebula )
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Relativistic outflows: yo>>1
Magnetized: 6>0.01

If shocks, then the field is
1 to the shock normal




Shocks: no turbulence — no acceleration
0=0.1 6=90° yo=15 e—-e* shock
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No “returning” particles — No self-generated turbulence
No self-generated turbulence — No particle acceleration

Spectrum fitted by a Maxwellian

(LS & Spitkovsky 11a)




The shock(ing) puzzie

Strongly magnetized (0>10-3) quasi-perp yo>1 shocks are poor particle accelerators

B, o is large — particles slide along field lines

0 is large — particles cannot outrun the shock

0

unless v>c (“superluminal” shock)
— Fermi acceleration is generally suppressed
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(LS etal. 13)

e Non-thermal energy spectra from shocks are steep (p>2).
e Shocks are not a natural explanation for the fast time variability.



Relativistic magnetic reconnection

E=vAB

reconnection
electric field

Accretion
Disk

Accretion

Disk Black

Hole

Relativistic Reconnection o = > ]

References: most of the people in this room

Can relativistic magnetic reconnection self-consistently produce non-thermal particles?



Simulation setup S

Relativistic 3D e.m. PIC code TRISTAN-MP (Buneman ‘93, Spitkovsky ‘05) -

What is the long-term evolution of relativistic magnetic reconnection?
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Dynamics and particle spectrum



Hierarchical reconnection
0=10 electron-positron
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e Reconnection is a hierarchical process of island formation and merging.

* The field energy is transferred to the particles at the X-points, in between the magnetic islands.
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Hierarchical reconnection

0=10 electron-positron

2D o0=10 with no guide field w t=45
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» Reconnection is a hierarchical process of island formation and merging.

* The field energy is transferred to the particles at the X-points, in between the magnetic islands.

» Anti-reconnection occurs at the interface between two merging islands.
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Inflows and outflows

0=10 electron-positron

2D o0=10 with no guide field w,t=45
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(LS 14, in prep)

e Inflow into the X-line is non-relativistic, vin ~ 0.1 ¢ (so, the reconnection rate r ~ 0.1).

o
e Qutflow into the islands is ultra-relativistic, at the Alfven speed v4 = ¢ \/ g
o



The particle energy spectrum -
—

0=10 electron-positron

e At late times, the particle
spectrum in the current sheet
approaches a power-law tail
dn/dy«y-? of slope p~2.

* The normalization increases,
as more and more particles
enter the current sheet.

 The mean particle energy in
the current sheet is ~o/2

— energy equipartition

(LS & Spitkovsky 14)



The maximum particle energy D
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e The maximum energy grows
at a rate ~r so that ymaxx 1
(compare to Ymaxt'? in

relativistic shocks).

(LS &
Spitkovsky 14)



Tearing mode vs drift-kink mode -
—

TEARING mode in the DRIFT-KINK mode perp to the
plane of alternating fields plane of alternating fields
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Particle acceleration vs heating
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3D 0=10 reconnection with no guide field
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In 3D, the in-plane tearing mode controls the evolution at late times.
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3D: particle spectrum

h
0=10 electron-positron
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e At late times, the particle
spectrum approaches a power-
law tail of slope p~2, extending
In time to higher and higher
energies. The same as in 2D.

e The maximum energy grows
as Ymaxot (compare to
Ymax>t"2 in shocks). The

reconnection rate is r~ 0.02 in
3D (vs r~0.1in 2D).

(LS &
Spitkovsky 14)



The acceleration mechanism



The highest energy particles
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Two acceleration phases: 1) at the X-point; 2) in between merging islands



Acceleration at X-points -
—
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7end

(LS &
Spitkovsky 14)

e The particles are accelerated by the reconnection electric field at the X-points, and
then advected into the nearest magnetic island.
e The energy gain can vary, depending on where the particle interacts with the sheet.



Interaction time [wp1]

Location at interaction with the current sheet [C/wp]

Position along the current sheet [c/wp]



Interaction time [wp1]

Location at interaction with the current sheet [C/wp]

Position along the current sheet [c/wp]

e High-energy particles start their

acceleration at both primary and
secondary X-points.

* The highest energy particles are
injected in a small fraction of the volume.



Fermi acceleration in between islands
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Dependence on the flow conditions



Dependence on the magnetization
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As O increases: As O increases:
e the reconnection rate » the power-law slope becomes harder

saturates at~0.15 ¢ = a probe of the flow magnetization?



Dependence on the temperature
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The temperature dependence is encoded in ow



Growth Rate (Tcwi)

0.15 \\: -----J--- RTI (lEigen_) |
4| O Deoectn o=10 Be/Bo=0.1
0.10 [ “ .
Density
0.05 :
0.00 [

0 05 1 15 ' 5
Guide Field (1By/Bol)

y [C/wp]

400

200 7 [c/wp]

(LS 14, in prep)



Growth Rate (Tcwi)
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. . (ONNO)

Dependence on the guide field —

2D 0=10 electron-positron 3D 0=10 electron-positron —
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For stronger guide fields, the normalization and the maximum energy are smaller,
because the reconnection electric field (and so, the reconnection rate) are smaller.



Astrophysical implications
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needed to explain the de-absorbed
TeV spectra in blazars and the

spectrum of the Crab GeV flares.
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 Small-scale islands in reconnection E : i V‘#
2 }
might explain the fast (~ 10 minutes) 3 {*q } t‘i H‘\#;
S : AW,
variability in TeV blazars and the 2 W0 mine

Crab flares.
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Summary

 Relativistic magnetic reconnection in pulsar winds and magnetically-dominated

jets is an efficient particle accelerator, in 2D and 3D.

* Relativistic reconnection can efficiently produce non-thermal particles, in the form
of a power-law tail with slope between -2 and -1 (harder for higher magnetizations),

and max energy growing linearly in time (promising for UHECRS).

» The reconnection rate (and so, the rate of growth of the max energy) is ~ 0.1 cin
2D and ~ 0.02 c in 3D for the case of zero guide field. In 3D, the drift-kink mode is

unimportant for the long-term evolution.

* The reconnection rate increases with magnetization up to ~ 0.15 ¢ (in 2D).

It decreases with the strength of the guide field.



