Particle Acceleration by Relativistic Magnetic Reconnection

Lorenzo Sironi (ITC-Harvard), Einstein Fellow "Relativistic Plasma Astro", Purdue, May 13th 2014 LS 2014, in prep.; LS & Spitkovsky, A. 2014, ApJL, 783, L21

Fast flares in relativistic flows

Crab Nebula

TeV blazars

Doubling time of ~8 hrs, with peak photon flux ~30 times larger than the average

~10 minutes flares on top of a high-state "envelope" that lasts for ~days

Hard spectra in relativistic flows

Crab Nebula

TeV blazars

The flare spectrum below the peak requires p<2. $\frac{dn}{d\gamma} \propto \gamma^{-p}$

After correcting for EBL absorption, the inferred TeV spectra are extremely hard (requiring *p*<2).

Relativistic outflows: $\gamma_0 >> 1$

Magnetized: σ >0.01

If shocks, then the field is \perp to the shock normal

$$\sigma = \frac{B_0^2}{4\pi\gamma_0 n_0 m_p c^2}$$

B₀

4

Shocks: no turbulence — no acceleration

 $\sigma=0.1 \theta=90^{\circ} \gamma_0=15 e^--e^+$ shock

No "returning" particles \rightarrow No self-generated turbulence No self-generated turbulence \rightarrow No particle acceleration

Spectrum fitted by a Maxwellian

The shock(ing) puzzle

Strongly magnetized (σ >10⁻³) quasi-perp γ_0 »1 shocks are poor particle accelerators

 $\begin{array}{l} \sigma \text{ is large} \rightarrow \text{particles slide along field lines} \\ \theta \text{ is large} \rightarrow \text{particles cannot outrun the shock} \\ & \text{unless v>c ("superluminal" shock)} \\ \rightarrow \text{Fermi acceleration is generally suppressed} \end{array}$

Non-thermal energy spectra from shocks are steep (p>2).

• Shocks are not a natural explanation for the fast time variability.

Relativistic magnetic reconnection

References: most of the people in this room

Can relativistic magnetic reconnection self-consistently produce non-thermal particles?

Simulation setup

Relativistic 3D e.m. PIC code TRISTAN-MP (Buneman '93, Spitkovsky '05)

What is the long-term evolution of relativistic magnetic reconnection?

periodic in x, expanding along y at c

Dynamics and particle spectrum

- Reconnection is a hierarchical process of island formation and merging.
- The field energy is transferred to the particles at the X-points, in between the magnetic islands.

Structure of the reconnection layer

Hierarchical reconnection

 σ =10 electron-positron

- Reconnection is a hierarchical process of island formation and merging.
- The field energy is transferred to the particles at the X-points, in between the magnetic islands.
- Anti-reconnection occurs at the interface between two merging islands.

Inflows and outflows

σ =10 electron-positron

2D σ =10 with no guide field $\omega_{p}t$ =45

- Inflow into the X-line is non-relativistic, $v_{in} \sim 0.1 c$ (so, the reconnection rate $r \sim 0.1$).
- Outflow into the islands is ultra-relativistic, at the Alfven speed $v_A = c \sqrt{\frac{\sigma}{1+\sigma}}$

The particle energy spectrum

$\sigma = 10$ electron-positron

• At late times, the particle spectrum in the current sheet approaches a power-law tail $dn/d\gamma \propto \gamma^{-p}$ of slope $p\sim 2$.

• The normalization increases, as more and more particles enter the current sheet.

 The mean particle energy in the current sheet is ~σ/2
→ energy equipartition

⁽LS & Spitkovsky 14)

The maximum particle energy

100

Time $[\omega_p^{-1}]$

10000

(LS &

Spitkovsky 14)

10

 $\sigma=10$ electron-positron

• The reconnection rate *r* stays nearly constant in time, if the evolution is not artificially inhibited by the boundaries.

• The maximum energy grows at a rate $\sim r$ so that $\gamma_{max} \propto t$ (compare to $\gamma_{max} \propto t^{1/2}$ in relativistic shocks).

Tearing mode vs drift-kink mode

TEARING mode in the plane of alternating fields

DRIFT-KINK mode perp to the plane of alternating fields

Which mode dominates in 3D?

(Zenitani & Hoshino 07)

(Zenitani & Hoshino 08)

<u>3D σ =10 reconnection with no guide field</u>

In 3D, the in-plane tearing mode controls the evolution at late times.

3D: particle spectrum

$\sigma=10$ electron-positron

• At late times, the particle spectrum approaches a powerlaw tail of slope $p\sim2$, extending in time to higher and higher energies. The same as in 2D.

• The maximum energy grows as $\gamma_{max} \propto t$ (compare to $\gamma_{max} \propto t^{1/2}$ in shocks). The reconnection rate is $r \sim 0.02$ in 3D (vs $r \sim 0.1$ in 2D).

The acceleration mechanism

Two acceleration phases: 1) at the X-point; 2) in between merging islands

Acceleration at X-points

• The particles are accelerated by the reconnection electric field at the X-points, and then advected into the nearest magnetic island.

• The energy gain can vary, depending on where the particle interacts with the sheet.

Primary & secondary X-points

Time [ω_{p⁻¹]}

200

400

Location at interaction with the current sheet $[C/\omega_p]$

600

800

Position along the current sheet $[\mbox{C}/\omega_{\mbox{p}}]$

Primary & secondary X-points

Time [ω_{p⁻¹]}

Location at interaction with the current sheet $[\mbox{C}/\omega_{\mbox{p}}]$

Position along the current sheet $[\mbox{C}/\omega_{\mbox{p}}]$

- High-energy particles start their acceleration at both primary and secondary X-points.
- The highest energy particles are injected in a small fraction of the volume.

Fermi acceleration in between islands

 The particles are accelerated by a Fermi-like process in between merging islands.

 Island merging is essential to shift up the spectral cutoff energy.

Dependence on the flow conditions

• the reconnection rate saturates at $\sim 0.15 c$

As σ increases:

- the power-law slope becomes harder
- \Rightarrow a probe of the flow magnetization?

The temperature dependence is encoded in σ_w

Dependence on the guide field

 (\cdot)

For stronger guide fields, the normalization and the maximum energy are smaller, because the reconnection electric field (and so, the reconnection rate) are smaller.

Astrophysical implications

• For high magnetizations, the nonthermal slope can be *p*<2, as needed to explain the de-absorbed TeV spectra in blazars and the spectrum of the Crab GeV flares.

 Small-scale islands in reconnection might explain the fast (~ 10 minutes) variability in TeV blazars and the Crab flares.

⁽Aharonian et al. 07)

• Relativistic magnetic reconnection in pulsar winds and magnetically-dominated jets is an efficient particle accelerator, in 2D and 3D.

• Relativistic reconnection can efficiently produce non-thermal particles, in the form of a power-law tail with slope between -2 and -1 (harder for higher magnetizations), and max energy growing linearly in time (promising for UHECRs).

• The reconnection rate (and so, the rate of growth of the max energy) is ~ 0.1 c in 2D and ~ 0.02 c in 3D for the case of zero guide field. In 3D, the drift-kink mode is unimportant for the long-term evolution.

• The reconnection rate increases with magnetization up to $\sim 0.15 c$ (in 2D). It decreases with the strength of the guide field.