Relativistic Reconnection: radiative and 3D effects

Using PIC codes: Zeltron Tristan-MP

How are - reconnection dynamics/energetics - and NTPA affected by:
- length in the 3rd dimension (z); i.e., 3D-ness
- guide magnetic field
- external inverse Compton cooling

Bonus: Code Comparison

Greg Werner
Dmitri Uzdensky
Vladimir Zhdankin
Mitch Begelman (CU Boulder)
Sasha Philippov (UC Berkeley)
Reconnection’s main job: magnetic field energy $\rightarrow$ particle/plasma energy
Reconnection $\rightarrow$ particle energization/NTPA $\rightarrow$ radiation

NTPA=Nonthermal Particle Acceleration

Evolution of background particle energy spectrum during reconnection

Maxwellian with same average energy as final (green) distribution.

The Lorentz factor $\gamma$ is used interchangeably with particle energy $\gamma mc^2$.

above from 2D simulations (e.g., Sironi&Spitkovsky 2014, Guo et al 2015, Werner et al 2016)
Reconnection parameters

Upstream Parameters: pair plasma
\( n_b, T_b, B_0, B_{gz} \) (guide field)

Dimensionless parameters:
\( T_b / m_e c^2 \gg 1 \) (ultrarelativistically-hot)
\[ \sigma = \frac{B_0^2}{4\pi n_b m_e c^2} \gg \frac{T_b}{m_e c^2} \] (relativistic reconnection)
\[ \sigma_h = \frac{B_0^2}{4\pi h} \approx \frac{B_0^2}{4\pi (4n_b T_b)} = 25,100 \] relativistic reconnection: relativistic outflows, significant energization

Later: vary inverse Compton (IC) radiative cooling

Nominal length scale:
\( \rho_0 = \frac{m_e c^2}{eB_0}, \rho_c = \sigma \rho_0 \)

System size: \( L_x, L_y, L_z \)

\( L_x/\sigma \rho_0 = 40 \) (3D) – 320 (2D)
\( L_y/L_x = 2 \)
\( L_z/L_x = \text{varying} \) (2D->3D)

How do these parameters affect reconnection?
Specifically:
- energetics
- NTPA
Focus on two “outputs” of reconnection: basic dynamics/energetics, and NTPA reconnection rate, magnetic energy dissipation, plasmoid formation, etc.
Focus on two outputs of reconnection: basic dynamics/energetics, and NTPA

NTPA:
(shown here, for weak IC cooling)

In the following, various input parameters will be varied ($B_{gz}$, $L_z/L_x$, IC cooling) with outputs (dissipated magnetic energy and NTPA) shown.
Vary $L_z/L_x$ (3D-ness) and $B_{gz}/B_0$ and see what happens...
3D effects: does \( L_z/L_x \) affect reconnection?

In particular, does the relativistic drift-kink instability (RDKI) inhibit particle acceleration? Here, guide magnetic field may be important: it inhibits RDKI.

from Zenitani & Hoshino, 2008:

However, more recent simulations (e.g., Sironi & Spitkovsky 2014, Guo et al 2015, Werner & Uzdensky 2017) have suggested that particle acceleration is robust to 3D effects.
Despite significant RDKI, 2D and 3D reconnection have similar reconnection rates and NTPA.

3D, $L_z = L_x$, $B_z = 0$
3D current sheet evolution
Energetics of 2D and 3D reconnection are similar regardless of guide field (for later: guide field has a significant effect)

Energy in in-plane B

\[ \frac{U_{\text{mag,xy}}(t)}{U_{\text{mag,xy}}(0)} \]

- \(B_{gz}/B_0 = 0\)
- \(B_{gz}/B_0 = 0.25\)
- \(B_{gz}/B_0 = 1\)
- \(B_{gz}/B_0 = 2\)

\[ \sigma_h = 25 \]
And 2D and 3D particle spectra are similar!

Nonthermal acceleration remains robust from 2D to 3D!
Also, a little guide field $B_{gz}$ hardly disturbs acceleration.

$L_x = 40\sigma_0$
$L_y = 80\sigma_0$

Electron/Positron energy spectra

$\sigma_h = 25$
During reconnection, the in-plane magnetic field compresses plasmoids.

When there’s a guide field, that guide field rests compression. This slows reconnection and inhibits particle acceleration.
Guide field not only slows reconnection rate, but steepens the NTPA power law.

Guide field slows reconnection, dissipates less magnetic energy (guide field resists compression).

\[ \sigma_h = \frac{B_0^2}{4\pi h_{\text{particle}}} + \frac{B_z^2}{4\pi \sigma_h} \]

\[ \sigma_{h,\text{eff}} = \frac{B_0^2}{4\pi h_{\text{particle}}} + \frac{B_z^2}{4\pi} \]

\[ \sigma_h = 25 \]

\[ \frac{1.9 + 0.7}{\sqrt{\sigma_{h,\text{eff}}}} \]
Reconnection in a bath of soft (low-energy) photons

High energy electrons (or positrons) scatter of photons, emitting high energy photons, and experiences radiation reaction (radiation) force.

If $U_{ph}$ is the photon energy density, then the power loss, for an electron with $\gamma m_e c^2$ is:

$$P_{rad} = \frac{4}{3} \sigma_T c U_{ph} \gamma^2$$

Power gain (accel.) in the reconnection electric field $E=0.1B_0$:

$$P_{acc} = (0.1)e B_0 c$$

These 2 forces (powers) balance for $\gamma=\gamma_{rad}$:

$$\gamma_{rad} = \sqrt{\frac{3(0.1)e B_0}{4\sigma_T U_{ph}}}$$

Particles can’t gain much more energy than this.
Reconnection setup with photon bath

Upstream Parameters: pair plasma
\( n_b, T_b, B_0, B_{gz} \) (guide field),
\( U_{ph} \) (soft radiation bath energy density)

Dimensionless parameters:

\[
T_b / m_e c^2 \gg 1 \quad \text{(ultrarelativistically-hot)}
\]

\[
\sigma = \frac{B_0^2}{4\pi n_b m_e c^2} \gg \frac{T_b}{m_e c^2} \quad \text{(relativistic reconnection)}
\]

\[
\sigma_h = \frac{B_0^2}{4\pi \hbar} \approx \frac{B_0^2}{4\pi (4n_b T_b)} = 25,100
\]

relativistic reconnection:
relativistic outflows,
significant energization

nominal length scale:

\[
\rho_0 = \frac{m_e c^2}{eB_0}, \rho_c = \sigma \rho_0
\]

System size: \( L_x, L_y, L_z \)

\[
L_x/\sigma \rho_0 = 40 \quad \text{(3D)} - 320 \quad \text{(2D)}
\]

\[
L_y/L_x = 2
\]

\[
L_z/L_x = \text{varying} \quad \text{(2D->3D)}
\]

nominal reconnection rate

\[\gamma_{rad} \frac{m_e c^2}{\sigma} = \frac{1}{\sigma} \sqrt{\frac{3(0.1)eB_0}{4\sigma U_{ph}}} \]

\( \gamma_{rad} m_e c^2 \) is the energy at which acceleration by reconnection \( E \) equals deceleration by IC radiation reaction.

How do these parameters affect reconnection?
IC scattering doesn’t affect basic reconnection dynamics very much

\[ \gamma_{rad} = \infty \text{ (no cooling)} \quad \gamma_{rad} = 2\sigma \text{ (strong cooling)} \]

color=plasma density (normalized to \( n_b \))
IC cooling has little effect on magnetic energy dissipation, reconnection rate

\[ \sigma_h = 100, \ B_{gz} = B_0/4 \]

Strong cooling doesn’t alter the amount of magnetic energy transferred to particles...but strong cooling means particles promptly radiate that energy.
IC cooling changes particle spectra significantly: noisy, steeper

$\sigma_h = 100$, $B_{gz} = B_0/4$
IC cooling changes particle spectra significantly

Weak cooling: usual hard power law
Strong cooling: variable steep power law
Intermediate: both power laws

$\sigma_h = 100$, $B_{gz} = B_0/4$
Time-dependence of power laws shows both powers laws present (mostly); steep power law is highly variable.

Regardless of IC cooling, (plasmoid-dominated) reconnection is bursty process with discrete acceleration episodes that yield NTPA spectra with a hard slope ($p_h=1.9$ in this case).

Cooling occurs between episodes, steepening the slope. Depending on episodes of acceleration and cooling, the steep slope $p_s$ falls between 3 and 5.

Continuous acceleration/cooling would yield $p_{s,\text{min}}=p_h+1=3$...but additional cooling results in higher $p_s$.

$$\sigma_h=100, \ B_{gz}=B_0/4$$
Time-integrated IC photon spectra

Photon power law index $\alpha = (p-1)/2$.

Hard slope $p_h = 1.9 \rightarrow \alpha = 0.45$ (measured 0.5)
Steep slope $p_s = 3-5 \rightarrow \alpha = 1-3$

However: a harder slope means more IC emission, so alpha should be dominated by the hardest $p_{s,\text{min}} = 3 \rightarrow \alpha = 1$ (measured 1.1)

In this particular case (ultrarelativistic pair plasma, $\sigma_h = 100$, $B_{gz} = B_0/4$), adding a soft photon bath changes index from $\alpha = 0.5$ to $\alpha = 1.1$. 
Simulation comparison: TRISTAN-MP and Zeltron

Both codes implement same fundamental algorithms: explicit EM-PIC with minor variants.

Both (as of this year) use charge-conserving current deposition (\( \text{div } E = \rho \) is automatically maintained to high precision), though different variants.

Both codes implement IC radiation reaction force (in somewhat different ways).

The implementations are entirely independent. Do they agree? Yes; very well.
Conclusions

- 3Dness ($L_z/L_x$) has little effect – despite significant RDKI – on reconnection rate and NTPA.
- Guide field slows reconnection and inhibits NTPA.
  - magnitude of effect depends on guide field enthalpy vs. particle enthalpy
    - if guide field enthalpy is large, the guide field resists compression and slows reconnection
    - if guide field enthalpy is small (compared to particle enthalpy), not much effect
- IC cooling (drag due to radiation reaction) has little effect on reconnection rate.
- IC cooling significantly affects NTPA.
  - Particle spectrum forms a broken power law, with
    - a hard slope $p_h$ (independent of IC cooling strength)
    - a highly-variable steep slope $p_s$, with $p_s > p_h + 1$ (also independent of cooling)
      - $p_s = p_h + 1$ would mean continuous acceleration and cooling
      - $p_s > p_h + 1$ for episodes of acceleration followed by further cooling
    - a break that decreases in energy as cooling strength increases.
    - For very weak cooling, the break is above the reconnection-high-energy-cutoff and only the hard power law appears;
    - for intermediate cooling, both power laws are visible;
    - for strong cooling, the hard power law appears only at the very beginning before being overwhelmed by the steep power law.
- The IC radiation spectrum varies with the particle spectrum.
  - For weak cooling, $p_h = 1.9 \rightarrow \alpha = 0.5$
  - For strong cooling, $p_s$ varies, $p_s \geq 3 = p_h + 1$, but the hardest component dominates so the photon spectrum corresponds roughly to $p_s = 3$, or $\alpha = 1$ (measured 1.1).