Overview of the plasma physics course

January 6, 2011

- 1. Basic Notions
 - Ionization temperature \ll ionization potential. Why?
 - Cross-section for binary collisions, large and small angles scattering, Coulomb logarithm, mean free path, e-e, i-e, i-i scattering frequencies (including ratio of), e-i thermalization times
 - Run-away phenomenon, Dreicer E-field
 - Debye screening
 - Plasma frequency, Langmiur oscillations
 - Charge-neutrality on $r \gg r_D$; potential of a charge in plasma
 - Plasma parameter, ration of thermal to Coulomb energies in plasma
- 2. Single particle motion
 - Motion in magnetic field
 - Drifts: electric, gradient, in gravitational field
 - Adiabatic invariants (first & second), magnetic moment
 - Magnetic bottling, mirrors
 - Earth ring current
- 3. MHD: strongly collisional plasma
 - typical times/scales in plasma, applicability of MHD, charge neutrality
 - Ideal condition
 - Equations of MHD
 - Notion of magnetic field line, frozen-in condition
 - Resistivity, two types of E-field in plasma, diffusion of magnetic field line
 - Stationary solutions, magnetic surfaces, plasma beta
 - Force-free configurations, Grad-Shafranov eq.

- MHD waves: Equilibrium, Small perturbations, Linearization, Fourier transform, Dispersion relation
- Alfvén velocity, slow, Alfvén fast waves
- Collisionless plasma, anisotropic pressure
- 4. Shock waves
 - Which way will magnetic field bend at a shock?
 - Earth-Solar wind interaction
 - Shock thickness
- 5. MHD stability
 - sausage, kink, R-T, K-H, firehose
- 6. Plasma normal modes
 - Plasma dielectric tensor
 - Alfvén , whistlers, E-M waves
 - Cut-offs and resonance
 - $\bullet\,$ skin depth
 - Dispersion and Faraday rotation
- 7. Plasma instabilities
 - Two-stream, bump-in-tail instability, current (Bunemann) instabilities, loss cone
 - Resonances, Landau rule, Collisionless damping
 - Plasma maser
- 8. Reconnection
 - tearing mode
 - Sweet-Parker model, Lundquist number, reconnection rate
 - anomalous resistivity
- 9. Dynamo
 - anti-dynamo theorems, necessary conditions for dynamo
 - Faradey wheel
 - $\bullet\,$ streatch-twist-fold
- 10. Particle acceleration
 - Shock acceleration, Fermi I and II
- 11. Non-linear effects in plasma

- non-linearity parameter
- Self focusing, induced transparency
- Ponderomotive force, Wakefield acceleration.