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Chapter 1

Basic definitions and parameters

In this chapter we learn in what conditions a new state of matter - plasma - appears.

1.1 Whatis plasma

Plasma is usually said to be a gas of charged particles. Taken as it is, this definition is
not especially useful and, in many cases, proves to be wrong. Yet, two basic necessary
(but not sufficient) properties of the plasma are: a) presence of freely moving charged
particles, and b) large number of these particles. Plasma does not have to consists of
charged particles only, neutrals may be present as well, and their relative number would
affect the features of the system. For the time being, we, however, shall concentrate on
the charged component only.

Large number of charged particles means that we expect that statistical behavior of
the system is essential to warrant assigning it a new name. How large should it be ?
Typical concentrations of ideal gases at normal conditionsiare10cm=3. Typical
concentrations of protons in the near Earth spacerarel — 10cm~3. Thus, ionizing
only a tiny fraction of the air we should get a charged particle gas, which is more dense
than what we have in space (which is by every lab standard a perfect vacuum). Yet we
say that the whole space in the solar system is filled with a plasma. So how come that
so low density still justifies using a new name, which apparently implies new features ?

A part of the answer is the properties of the interaction. Neutrals as well as charged
particles interact by means of electromagnetic interactions. However, the forces be-
tween neutrals are short-range force, so that in most cases we can consider two neutral
atoms not affecting one another until they collide. On the other hand obachedpar-
ticle produces a long-range field (like Coulomb field), which can affect many particles at
a distance. In order to get a slightly deeper insight into the significance of the long-range
fields, let us consider a gas of immobile (for simplicity) electrons, uniformly distributed
inside an infinite cone, and try to answer the question: which electrons affect more the
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CHAPTER 1. BASIC DEFINITIONS AND PARAMETERS

one which is in the cone vertex ? Roughly speaking, the Coulomb force acting on the
chosen electron from another one which is at a distanezinversely proportional to

the distance squared, ~ 1/r2. Since the number of electrons which are at this dis-
tance,N, « 72, the total force N, f, ~ r, is distance independent, which means that
that electrons which are very far away are of equal importance as the electrons which are
very close. In other words, the chogaobeexperiences influence from a large number

of particles or the whole system. This brings us to the first laottectiveeffects may

be important for a charged particle gas to be able to be called plasma.

1.2 Debye shielding

In order to proceed further we should remember that, in addition to the denstery

gas has a temperaturfée which is the measure of the random motion of the gas particles.
Consider a gas of identical charged particles, each with the clyarde order that

this gas not disperser immediately we have to compensate the charge degnsiti
charges of the opposite sign, thus making the sysieatral More precisely, we have to
neutralize locally, so that the positive chadgnsityshould balance the negative charge
density Now let us add a test chargewhich make slight imbalance. We are interested

to know what would be the electric potential induced by this test charge. In the absence
of plasma the answer is immediaig:= ()/r, wherer is the distance from the charge

Q. Presence of a large number of charged particles, which can move freely, changes
the situation drastically. Indeed, it is immediately clear that the charges of the sign
opposite toQ), are attracted to the test charge, while the charges of the same sign are
repelled, so that there will appear an opposite charge density in the near vicinity of the
test charge, which tends to neutralize this charge in some way. If the plasma particles
were not randomly moving due to the temperature, they would simply stick to the test
particle thus making it "neutral”. Thermal motion does not allow them to remain all the
time nearQ, so that the neutralization cannot be expected to be complete. Nevertheless,
some neutralization will occur, and we are going to study it quantitatively.

Before we proceed further we have to explain what electric field is affected. If we
measure the electric field in the nearest vicinity of any particle, we would recover the
single particle electric field (Coulomb potential for an immobile particle or Lienard-
Viechert potentials for a moving charge), since the influence of other particles is weak.
Moreover, since all particles move randomly, the electric field in any point in space will
vary very rapidly with time. Taking into account that the number of plasma charges
producing the electric field is large, we come to the conclusion that we are interested in
the electric field which is averaged over time interval large enough relative to the typical
time scale of the microscopic field variations, and over volume large enough to include
large number of particles. In other words, we are interested in the statistically averaged,
or self-consistenglectric potential.



CHAPTER 1. BASIC DEFINITIONS AND PARAMETERS

Establishing the statistical (or average) nature of the electric field around the test
charge we are able now to use the Poisson equation

Ap = —dmp — 47 Qd(r), (1.2)

where the last term describes the test point charge in the coordinate origin,pwile
the charge density of the plasma patrticles,

p = q(n —ng). (1.2)

Heren is the density of the freely moving charges in the presence of the test charge,
while ng is their density in the absence of this charge. Assuming that the plasma is
in thermodynamic equilibrium, we have to conclude that the charged patrticle are dis-
tributed according to the Boltzmann law

n =ngexp(=U/T), (1.3)

wherelU = g¢. Strictly speaking, the potential in the Boltzmann law should be the local
(non-averaged) potential, and averaging

(exp(—qo/T)) # exp(—q))/T).
However, sufficiently far from the test charge, whe¢gT' < 1 we may Taylor expand

qo

(exp(—qo/T)) =1 — <T>
so that )
Nogq

p= —T¢7 (1.4)

where nowy is the self-consistent potential we are looking for. Substituting into (1.1),
one gets
1d ,d 41n0q>
—_— — — p— 1-5
2dr dr T ¢ (1.5)
for » > 0 and boundary conditions read — @ /r whenr — 0, and¢ — 0 when
r — oo. The above equation can be rewritten as follows:

2 1
Za(rd) = %(Tﬁb), (1.6)
where

rp = /T /4mngq? a.7)

is called Debye radius. The solution (with the boundary conditions taken into account)
IS

6= Lexp(—r/rp). (18)
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CHAPTER 1. BASIC DEFINITIONS AND PARAMETERS

We see that for < rp the potential is almost not influenced by the plasma particles
and is the Coulomb potential ~ @/r. However, atr > rp the potential decreases
exponentially, that is, faster than any power. We say that the plasma charges effectively
screen out the electric field of the test charge outside of the Debye sphere .

The phenomenon is called Debye screening or shielding, and is our first encounter with
the collective features of the plasma. Indeed, the plasma particles act together, in a
coordinated way, to reduce the influence of the externally introduced charge. It is clear
that this effect can be observed only if Debye radius is substantially smaller than the
size of the system,, < L. This is one of the necessary conditions for a gas of charged
particle to become plasma.

It is worth reminding that the found potential is the potential averaged over spatial
scales much large than the mean distance between the particles, and over times much
larger than the typical time of the microscopic field variations. These variations (called
fluctuations) can be observed and are rather important for plasmas’ life. We won't
discuss them in our course.

The two examples of the collective behavior of the plasma (Debye shielding and
plasma oscillations) show one more important thing: the plasma particles are "con-
nected" one to another viegelf-consistenelectromagnetic forces. The self-consistent
electromagnetic fields are the "glue" which makes the plasma particles behave in a co-
ordinated way and this is what makes plasma different from other gases.

1.3 Plasma parameter

Since the derived screened potential should be produced in a statistical way by many
charges, we must require that the number of particles inside the Debye sphere be large,
Np ~ nr¥ > 1. The parametey = 1/Np, is often called the plasm parameter. We see
that the conditiony < 1 is necessary to ensure that a gas of charged particles behave
collectively, thus becoming plasma.

We can arrive at the same parameter in a different way. The average potential energy
of the interaction between two charges of the plasnia is ¢? /7, wherer is the mean
distance between the particles. The latter can be estimated from the condition that the
there is exactly particle in the sphere with the radius™ ~ 1, so that- ~ n~/3, The
average kinetic energy of a plasma particle is nothing/hgo that

U ¢2nl/3 1
K T n?/3r2, =9

(1.9)

If ¢ < 1, as it should be for a plasma, then the average potential energy is substantially
smaller than the average kinetic energy of a particle. In fact, we could expect that since
in order that the charges be able to move freely, the interaction with other particles
should not be too binding. /K < 1, the plasma is said to be ideal, otherwise it is

4



CHAPTER 1. BASIC DEFINITIONS AND PARAMETERS

non-ideal. We see that only ideal plasmas are plasma indeed, otherwise the substance is
more like a charged fluid with typical liquid properties.

1.4 Plasma oscillations

In the analysis of the Debye screening the plasma was assumed to be in the equilibrium,
that is, the plasma charges were not moving (except for the fast random motion which is
averaged out). Thus, the screening is an example dSttte collective behavior. Here
we are going to study an example of ttignamiccollective behavior.

Let us assume that the plasma consists of freely moving electrons and an immobile
neutralizing background. Let the charge of the electroq lbeassn, and density.. Let
us assume that, for some reason, all electrons, which were in the halfaspatemove
to the distancd to the right, leaving a layer of the non-neutralized background with the
charge density = —nq and widthd. The electric field, produced by this layer on the
electrons orbboth edgess E = 27pd = —2mwnqd (for the electrons at the right edge) and
E = 27pd = 2mnqd (for the electrons at the left edge). The folee= ¢F = —2mng*d
accelerates the electrons at the right edge to the left, while the electrons at the left edge
experience similar acceleration to the right. The relative acceleration of the electrons at
the right and left edges would be= 2(qFE/m) = —4nng*d/m. On the other hand,
a = d, so that one has

7 2 2 2
d = —w,d, w, = 4mng”/m. (1.10)

The derived equation describes oscillations withgteesma frequency,. It should be
emphasized that the motion is caused by the coordinated movement of many particles
together and is thus a purely collective effect. In order to be able to observe these
oscillations their period should be much smaller than the typical life time of the system.

1.5 “*lonization degree

A plasma does not have to consist only of electrons, or only of electrons and protons.
In other words, neutral particles may well be present. In fact, most laboratory plasmas
are only partially ionized. They are obtained by breaking neutral atoms into positively
charged ions and negatively charged electrons. The relative number of ions and atoms,
n;/ng, is called the degree of ionization. In general, it depends very much on what is
making ionization. However, in the simplest case of the thermodynamic equilibrium
the ionization degree should depend only on the temperature. Indeed, the process if
ionization-recombination; < i + e, is a special case of a chemical reaction (from the
point of view of thermodynamics and statistical mechanics). ILbe the ionization
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CHAPTER 1. BASIC DEFINITIONS AND PARAMETERS

potential, that is, the energy needed to separate electron from an atom. Then

M _ Jite oxp(—1/T), (1.11)

Na Ya

whereg;.. = g;9. andg, are the number of possible states for the ion+electron and
atom, respectively. Usually, ~ g; ~ 1. However,g, is large. It can be calculated
precisely but we shall make a simple estimate to illustrate the methods, which are widely
used in plasma physics. The number of available states for an elgctror\ 1V A3p/h?,
whereAV is the volume available for one electrah?p is the volume in the momenta
space, and is the Planck constant. It is obvious that” ~ 1/n.. The volume in the
momenta space can be estimated if we remember that the typical kinetic energy of a
thermal particlep? /m ~ T, from whichA%p ~ (T'm,)*2. Eventually,

(Tme)3/2

e ™~ 7, 1.12
g e (1.12)
and (1.11) takes the following form:
, 3/2
mane | (Tme)™” 1T, (1.13)

~Y
Ng h3

Let us proceed further by assuming that the ions are singly ionized, whichrgives..,
and introduce the total density = n, + n; and the ionization degree= n;/n, then
one has
22 (Tme)3/2

1—2" s
When the density is low, the pre-exponential in (1.14) is large, and evéh forl the
ionization degree may be close to unity, — z < 1. In this case we say that the plasma
is fully ionized. The expression (1.14) in its precise form is called Saha formula.

exp(—1/T). (1.14)

1.6 Summary

e Plasmais a gas of ionized patrticles.

Debye length (single species), = (T'/4rng?®)"/2.

Debye screening of a test particle:= Q exp(—r/rp)/r.

Plasma parameteg:= 1/nr$, < 1.

Plasma frequency (single species):= (4rnq?/m)'/2.
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1.7 Problems

PROBLEM 1.1. Calculate the Debye length for a multi-species plasmays, Ts. The plasma
is quasi-neutral} | nsqs = 0.

PROBLEM 1.2. Calculate the plasma frequency for a multi-species plasmags, ms. The
plasma is quasi-neutra}.  nsqs = 0.

PROBLEM 1.3. Calculaterp, g andw, for the plasmas in Table A.

PROBLEM 1.4. A parallel plate capacitor chargedar is immersed into an electron plasma
(immobile ions). What is the potential distribution inside the capacitor ? What is its capacity ?
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Chapter 2

Plasma description

In this chapter we learn about possible methods of plasma description, and derive the
powerful but limited MHD.

2.1 Hierarchy of descriptions

In order to deal with plasma we have to choose some method of description. The most
straightforward and most complete would seem to use the motion equations for all par-
ticles together with the Maxwell equations for the electromagnetic fields. However, it is
impossible as well as unreasonable for a many-particle system with a collective behav-
ior. A less precise but much more efficient description would be to describe all particles
of the same species as a fluid in the phase spage). This would correspond to the
assumption that on average behavior of each particle is the same and independent of
other particles, following only the prescriptions of the self-consistent fields. In this ap-
proach we forget about the possible influence of the deviations of the fields from the
self-consistent values (fluctuations) and direct (albeit weak) dependence of a particle on
its neighbors (correlations). This is the so-called kinetic description.

The further step toward even greater simplification of the plasma description would
be to average over momenta for each species, so that only average values remain. In
this case each speciess described by the local density, local fluid velocitywv,, local
temperaturd’; or pressure,. This is the so-called multi-fluid description.

Finally, we can even forget that there are different species and describe the plasma
as one fluid with the mass density,, velocity V', and pressure. It is clear that
electromagnetic field should be added in some way. The rest of the chapter devoted
to the description of plasma as a single fluid. The description is known as magneto-
hydrodynamics (MHD) for the reasons which become clear later.
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CHAPTER 2. PLASMA DESCRIPTION

2.2 Fluid description

In order to describe a fluid we choose a physically infinitesimal voldimeurrounding

the pointr in the moment. The physically infinitesimal volume should be large enough

to contain a large number or particles, so that statistical averaging is possible. On the
other hand, it should be small enough to not make the averaging too coarse. With-
out coming into details we shall assume that qualitative meaning of this "infinitesimal”
volume is sufficiently clear and we can make such choice.

The fluid mass,, density is simply the sum of the masses of all particles inside
this volume divided by the volume itself, = > m;/dV. Since the result may be
different for volumes chosen in different places or at different times, the density can, in
general, depend onandt. The hydrodynamical velocity of this infinitesimal volume
is simply the velocity of its center of mas¥: = > m,v;/pdV. Again,V = V (r,t).
Pressure is produced by the random thermal motion of particles (relative to the center-
of-mass) in the infinitesimal volume. In order to avoid unnecessary complications we
shall assume that the pressure is isotropic, that is, described by a single scalar function
p(r,t). In what follows we shall consider plasma as an ideal gas, that is, nT,
wheren(r,t) is the concentration anfi(r, ¢) is the temperature. Thus, we have four
fields pp(r,t), V(r,t), p(r,t), andT(r,t), for which we have to find the appropriate
evolution equations, connecting the spatial and temporal variations. For brevity we do
not write the dependende, ¢) in what follows.

2.3 Continuity equation

We start with the derivation of the continuity equation which is nothing but the mass
conservation. Let us consider some volume. The total mass inside the volume is

M:/pdepm (2.1)
1%

This mass can change only due to the flow of particles into and out of the volume. If
we consider a small surface elemeah§ = ndS, then the mass flow across this surface
during timedt will be dM = p,, V' dt-dS. The total flow across the surfasesnclosing

the volumeV from inside to outside would be

dJ:j{pmV-det: / div(p, V)dVdt 2.2)
S |4

Since the flow outward results in the mass decrease, we write

d
— | pndV = —/ div(p,,V)dV = (2.3)

10



CHAPTER 2. PLASMA DESCRIPTION

[ %+ aitp v av o= (2.4)
| ot
aa’;;” +div(pn V) = 0. (2.5)

The last relation follows from the fact that the previous should be valid for any arbitrary
(including infinitesimal) volume at any time. Equation (2.5) is the continuity equation.

2.4 Motion (Euler) equation

The single particle motion equation is nothing but the equation for the change of its
momentum. We shall derive the equation of motion for the fluid considering the change
of the momentum of the fluid in some volumé& The total momentum at any time
would be

P:/,odeV (2.6)
1%

The momentum changes due to the flow of the fluid across the boundary and due to the
forces acting from the other fluid at the boundary. Let us start with the momentum flow.
The fluid volume which flows across the surfat® during timedt is Vdt - dS. This
flowing volume takes with it the momentud®P = (p,,,V)(Vdt - dS). Thus, the total

flow of the momentum outward is

dP = jl{(pmv)(V -dS)dt (2.7)
S
The total force which acts on the boundaries of the volume from the outside fluid is
F = —%pdS (2.8)
S
Combining (2.6)-(2.8) we get

4 pmVdV = — %(pmV)(V -dS) — %pdS (2.9)

dt Jy s S

Further derivation is simpler if we write (2.9) in the component (index) representation:

0
[ aoaviav == §(puvivi)as, - § piyds, (2.10)
1% S S

and use the vector analysis theorem:

B
ApdS: = | ——Aud 2.11
# agas, = [ S (2.11)
11
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Now we get the motion equation in the following form:

0 0 0
— )+ — V)= —— 2.12
By (PmVi) + o, (PmViV5) oz,” (2.12)
If we recall that the continuity equation can be written as
0 0
— —_— . pu— 2.1
97" o (pmV;) =0 (2.13)

we can rewrite (2.12) in the following widely used form:

Pom (%V + (V- V)V) = —gradp (2.14)

One has to be cautious with the form of the equation siii¢e V)V is not a good
vector form and cannot be easily written in curvilinear coordinates. Instead one has to
use the proper vector representation

2

(V-V)V =grad (V?) -V xrotV (2.15)

It is worth noting that the force- grad p thevolumeforce, that is, the forth per unit
volume. If other volume forces exist we should simply add them to the right hand side
of (2.14).

2.5 State equation

We have derived 4 equations (one for the scalar and three for the vector equation) for
5 variables:p,,, three components &, andp. Therefore, we need another equation

for the pressure. Either we have to derive it from the first principles, as we did for the
continuity equation and the motion equation, or to use some sort of approximate closure.
For this course we just assume that the pressure is a function of densityp).

2.6 MHD

So far we have been treating a single fluid, without any relation to plasma. What makes
the fluid plasma is its ability to carry currents. If the current density in the plasma
is j then it experiences the Ampere for€e/c)j x B, once the magnetic field is
present. In principle, electric volume forggE: may be also present. However, in the
non-relativistic MHD approximation the plasma is quasi-neutral and this term is absent,
and for the rest of the chapter we do not write the indefor p - it is always the mass

12
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density. (If you ever wish to learrelativistic MHD do not forget the electric force.)
Thus, the motion equation takes the following form:

p(%V—l—(V-V)V) = —gradp+%j x B (2.16)

However, now we have two more vector variablgsand B. It is time to add the
Maxwell equations:

divB =0, (2.17)
4 1
ot B = —j + —QE, (2.18)
c cot
10
tE=—-—B. 2.19
ro vy (2.19)

We do not need théiv E = 4mp, equation since quasi-neutrality is assumed and this
equation does not add to the dynamic evolution equations, but rather allows to check
the assumption in the end of calculations. Eq. (2.17) is a constraint, not an evolution
equation since it does not include time derivative. Itis also redundant since (2.19) shows
that once(ddiv B/dt) = 0, and once (2.17) is satisfied initially it will be satisfied
forever.

It can be shown (we shall see that later in the course) that non-relativistic MHD is
the limit of slow motions and large scale spatial derivatives, so that the displacement
current is always negligible, and (2.18) becomes a relation between the magnetic field
and current density

j= i rot B. (2.20)

The only evolution equation which remains is the induction equation (2.19). However,
it includes now the new variabl& which does not seem to be otherwise related to
any other variable. Ohm’s law comes to help. The local Ohm’s law for a immobile
conductor is written ag = oFE. Plasma is a moving conductor and the Ohm’s law
should be written in the plasma rest franje= o E’. For non-relativistic flows the rest
frame electric fieldE’ = E + V x B/c, while j7 = j because of the quasi-neutrality
condition. Thus, the Ohm’s law should be written in our case as

j=0(E+V xBJc). (2.21)
This relation is used to express the electric field in terms of the magnetic field:
1
E=-—"VxB+-"rotB, (2.22)
c 4o
and substitute this in (2.19):
OB rot(V x B) + -~ AB (2.23)
ot dro ’ '

13
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thus getting an equation containing od/andV'.
Now, substituting (2.20) into (2.16) we get the equation of motion free of the current:

0 1
p (—V+(V-V)V) = —gradp+ —rot B x B. (2.24)
ot 4

2.7 Order-of-magnitude estimates

Let L be the typical inhomogeneity length, which means that when we moxerby, z ~
L the variable under consideration, s#/ changes byAB ~ B. Now substitute
(0B/0zx) ~ AB/Ax ~ B/L, thatisV ~ 1/L. Similarly, if T is the typical vari-
ation time, we havg¢d/ot) ~ 1/T. Typical velocity then is estimated & ~ L/T.
Using these definitions we can estimate from the induction equétien(V’/c) B. Re-
spectively, the ratio of the displacement currentsioB term will be

10E LE V2
it Bl ~ ~
’catl/’mt | cT'B ( )

Cc

and is very small for nonrelativistic velocities. This is the reason, why it is usually
neglected.

For the charge density we haye = div E /47 ~ E/4rL. Thus, the ratio of the
electric and magnetic forces

e E| Eas ’
|(1/¢)j x B| 4w \ ¢

and is also negligible.

2.8 Summary
Let us write down again the complete set of the MHD equations:
0 :
ETl + div(pV') =0, (2.25)
in: —gradp—i—irotB x B, (2.26)
dt 4
OB rot(V x B) + -CAB (2.27)
ot~ ° 4o ’ '
where we introduced the substantial derivative
d 0
—=—4+(V-V). 2.28
w5tV V) (2.28)

14



CHAPTER 2. PLASMA DESCRIPTION

The MHD set should be completed with the state equatioa p(p) and is usually
completed with the Ohm's lal + V' x B/c = j/o. Wheno — oo the MHD isideal
MHD.

2.9 Problems

PROBLEM 2.1. Complete the MHD equations for the case when there is gravity.

PROBLEM 2.2. Forp x p” and no entropy change show that the internal energy per unit
volumeu = p/(y — 1).

PROBLEM 2.3. Derive the energy conservation:

9, B? 1
5 (;pv2 +u+ 87T> +div ((;pv2 +tutp)V+ B x (V% B)> =0 (2.29)

PROBLEM 2.4. Let a plasma penetrate a neutral fluid. Discuss the form of the frictional force
between the two fluids in the equation of motion for the plasma.

15



CHAPTER 2. PLASMA DESCRIPTION

16



Chapter 3

MHD equilibria and waves

In this chapter we become familiar with the coordinated behavior of plasma and mag-
netic field, and discover the most important features of the plasma - waves.

3.1 Magnetic field diffusion and dragging

We start our study of MHD applications with the analysis of (2.27). Let us consider
first the case where the plasma is not moving at all, thais+ 0. Fot simplicity let
B = B(z,t)z, so that one gets

0 2 02
Let us represent the magnetic field using Fourier-transform:
B(z,t) = / B(k, t) exp(ikx)dk, (3.2)
then one has
~ kQCQ ~
B(k,t) = ———B(k,t) (3.3)
Ao
with the solution . .
B(k,t) = B(k,0) exp(—k*c*t/4n0). (3.4)

The wavenumbetr is the measure of spatial inhomogeneity: the largéne smaller

is the inhomogeneity scale. Eqg. (3.4) shows that the inhomogeneous magnetic field

disappears with time, and the rate of disappearance higher for the components with

smaller scales of inhomogeneity. This phenomenon is known as the magnetic field

diffusion and is responsible for the graduate dissipation of the magnetic fields in stars.
Let us no consider the opposite case— oo andV # 0. Let us choose a closed

path (contour), moving with the plasma and calculate the change of the magnetic flux
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across the surfacg enclosed by this contoub, = [, B - dS. The flux changes due to
the local change of the magnetic field and due to the change of the contour moving with
the plasma. The total change during the tiués

d@z/a—B-detJr%B-(thde)
s Ot L

:( a—B'dS—j{(VxB)'dL)dt
s Ot L
0B

_ /S (E ~rot(V x B)) -dSdt = 0

that is, the magnetic flux across the contour moving with the plasma, does not change.
This is often referred to as the magnetic field frozen in plasma: magnetic field lines are
dragged by plasma. For the rest of the course we will be dealing with the ideal MHD
only, if not stated explicitly otherwise.

3.2 Equilibrium conditions

Plasma is said to be in the equilibriumW = 0 and none of the variables depend on
time. The only equation which has to be satisfied is

1 1
gradp= -3 x B=—rotB x B. (3.5
c 47

One can immediately see that in the equilibrigmadp 1. B andgradp L j, thatis,
the current lines and the magnetic field lines all lie on the constant pressure surfaces. In
the special casg || B no pressure forces are necessary to maintain the equilibrium, the
configuration is called force-free.

The right hand side of (3.5) is often casted the in the following form:

! B x B = d B 1 B-V)B 3.6
Erot x B = gra8—ﬁ+ﬂ( -V)B, (3.6)
where the first term represents timagnetic pressurevhile the last one is themagnetic
tension
In order to understand better the physical sense of the two terms let start with con-
sidering the magnetic field of the forl®8 = (B,, B,,0) and assume that everything
depends on: only. Then (3.5) with (3.6) read

d B? 1,0
I (p+2) = 2B,YB
oz (p—i— 87r) 4o 0"

O:Bxa

—B
ox Y
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Sincediv B = (0B, /0x) = 0 we have only two options: aB = const ang = const
(not interesting), and b, = 0, B, = B,(z), and
B2
p+ =2 = const (3.7)
8

Thus, in this case the direction of the magnetic field does not change, and mechanical
equilibrium requires that the total (gas+magnetic) pressure be constant throughout.

3.3 MHD waves

Waves are the heart of plasma physics. There is nothing which plays a more important
role in plasma life than waves, small or large amplitude ones. The rest of this chapter is
devoted to the description of the wave properties of plasmas within the MHD approxi-
mation.

As in other media, waves are small perturbations which propagate in the medium.
Thus, a medium which is perturbed in some place initially would be perturbed in other
place later. In order to study waves we have to learn to deal with small perturbations
near some equilibrium. We outline here the general procedure of the wave equations
derivation, the procedure we shall closely follow later in our studies of waves in more
sophisticated descriptions.

Step 1. Equilibrium. We start with the equilibrium state, where nothing depends

on time and there no flows. In our course we shall study only waves in homogeneous
plasmas, that is, we assume that the background (equilibrium) plasma parameters do not
depend on coordinates either. In the MHD case that mpaasp, = const,V = 0,

p = po = const, andB = B, = const.

Step 2. Small perturbations. We assume that all variables are slightly perturbed:
p=po+ep, V=€V, p=py+ep, andB = By + B, wheree < 1 is a formal
small parameter which will allow us to collect terms which are of the same order of
magnitude (see below). We have to substitute the perturbed quantities into the MHD
equations (2.25)-(2.27):

0 .

&(601) +div(epoVi + €01 Vi) = 0,

0 1

(po + epl)a(evl) + (V1 - V) (V1) = —grad(ep1) + yo rot(eB;) x (By + €By),
0

a(EBl) = rot(eV1 X BO + 62‘/1 X Bl)7

where we have taken into account that all derivatives of the unperturbed variables (index
0) vanish.
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Step 3. Linearization. This is one of the most important steps, were we neglect all
terms of the ordet? and higher and retain only thigear termscx ¢, to get

0 .
5PL T Podivii =0, (3.8)
1
pogvl = —grad p; + — rot B; x By, (3.9
ot 4
%Bl = rot(V; x By). (3.10)

We have to find a relation betweenandp;. It simply follows from the Taylor expan-
sion (first term):

d
p1 = (d_p> P11 = ngb (3.11)
P/ p=po

where the physical meaning of the quantifywill become clear later.

Step 4. Fourier transform.  The obtained equations are linear differential equations
with constant coefficients, and the usual way of solving these equations is to assume for
all variables the same dependeree(ik - r — wt), that is,p; = py exp(ik - r — wt),

etc. Herek is thewavevectoandw is frequency It is easy to see that one has to simply
substitute(9/dt) — —iw andV — ik, so that

—iwpy +ipok - Vi = 0, (3.12)

—iwpoVi = —iv2kpy + 4i(k: x B)) x By, (3.13)
7I

—iwB; =ik x (Vi x By). (3.14)

The obtained equations are a homogeneous set of 6 equations for 6 variables: the den-
sity, three components of the velocity, and two independent components of the magnetic
field - third is dependent becausedd B; = 0 = ik - B, = 0.

Step 5. Dispersion relation. In order for non-trivial (nonzero) solutions to exist the
determinant for this set should be equal zero. This determinant is a function of the un-
perturbed parameters as welkaandk. Let us assume that the determinant calculation
provided us with the equation

D(w, k) = 0. (3.15)

This equation established a relation between the frequency and the wavevector, for
which a nonzero solution can exist. This relation (and often (3.15) itself) is called a
dispersion relation

Itis possible to write down théx 6 determinant derived directly from (3.12)-(3.14).
However, it is more instructive and physically transparent to look at the magnetic field
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and velocity components. Eqg. (3.12) shows that density (and pressure) variations are
related only to the velocity component along the wavevector,

p1 = po(k - ‘Z)/w (3.16)

Eq. (3.14) shows that the magnetic field perturbations are always perpendicular to the
wavevectorB; | k.

The subsequent derivation is a little bit long but rather straightforward and physically
transparent. It is convenient to define a new varidble k x By, such thak - E = 0.
The equations take the following form:

- 2pok . - 1
—wpVi = =P (k. V) + —E x B,, (3.17)
w 4 .
—wE = (k x Vi)(k - By) — (k x By)(k-V1). (3.18)

Scalar and vector products of wikhgive, respectively:

k2v? -~ 1
- . B
kxﬂz—% ) p (3.20)
A7 pow
Substituting (3.20) into (3.18) one obtains
(k- By)? B -
(1 T E = (k x By)(k - V}). (3.21)
Now the scalar and vector products of (3.21) witkx B, give
. 2
1= BB B ke x By) =0, (3.22)
41 pow?
(k- By)? ~
Equation (3.22) means th#t x (k x Bg) # 0 only if
. 2
W2 = w’ (3.24)
4mpo
while (3.23) together with (3.19) give fdr x (k x Bg) =0
2,2 . 2 2
w? 41 pow? 47 pow?
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Before we start analyzing the derived dispersion relations let us introduce some

—

useful notation{kB,) = ¢, so thatk - By = kB cos 0, |k x By| = kBysin 6. We also
define the Alfven velocity as% = B2 /4wpo. The wave phase velocity,, = (w/k)k,
vpn, = w/k. Now (3.24) takes the following form:

v2, = vj = v cos’ 0, (3.26)
where index/ stands foiintermediate It is easy to see that for this wav®, | B,, so
that the perturbation of the magnetic field magnitdd® = 2B, - B, = 0, hence the
magnetic pressure does not change. Simildfy,L k and there are no perturbations of
the density and plasma pressure.

The relation (3.25) gives,, = vy (for fas)) or v,;, = vg,, (for slow), where

Vrsp =3 [(0124 +0?) + \/(”U?4 + v2)? — 40302 cos? 0| . (3.27)

The two modes are compressihbe,~ 0, p; # 0, and B, lies in the plane ok and B,,.
The names of the modes are related to the factithak v; < vp.

It is easy to see that if there is no external magnetic fiBld= 0, the only possible
mode isvy;, = v7. In the ordinary gas this wave mode would be jsstind that is,
propagating pressure perturbations, so thas thesound velocity In the presence of
the magnetic field the magnetic pressure and the gas pressure either act in the same
phase (in the fast wave) or in the opposite phases (in the slow wave).

3.4 Alfven and magnetosonic modes

We start our analysis with the intermediate mode, which is also called Alfven wave. The
dispersion relation reads R
w=kvgcost = (k-b)uy, (3.28)

whereb = B,/By. The magnetic field perturbatiol; 1 k, B, and there are no
density perturbations. The velocity perturbations

Vi = —v4B,/B,. (3.29)

The phase velocity,,, = (w/k)l% = v, cos Ok, while the group velocity (the veloc-
ity with which the energy is transferred by a wave packet) is
dw .
9= g = vab, (3.30)
and is directed along the magnetic field. To summarize, Alfven waves are magnetic
perturbations, whose energy propagates along the magnetic field. Plasma remains in-
compressible in this mode. This perturbations become non-propagating (do not exist)

v
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whenk 1 B,. The last statement means also that the slow mode does not exist either
for the perpendicular propagation.

The two other modes are bothagnetosonievaves, since they combine magnetic
perturbations with the density and pressure perturbations, typical for sound waves. In
the case of perpendicular propagation only the fast mode exists with

vp = 4[4 + V2, (3.31)

while the parallel case; | B, both are present with
vp = max(vy, v), vgr, = min(vy, vg). (3.32)

In the fast wave the perturbations of the magnetic field and density are in phase, that is,
increase of the magnetic field magnitude is accompanied by the density increase. In the
slow mode the magnetic field increase causes the density decrease.

It is worth mentioning that the ratio, /v, depends on the kinetic-to-magnetic pres-
sure ratio. Let us assume, for simplicity, a polytropic law for the presspre=

po(p/po)?, thenv? = ypo/py. Thus,

4ypo  YPo
= = =100 3.33
vy Bj 2pB ( )

It is widely accepted to denoté= p,/pp = 87po/ Bs.

3.5 Wave energy

For simplicity we consider only the incompressible Alfven mode here. The general
solution for the magnetic field can be written as

B, = /Bl explik - r — w(k)t]dk. (3.34)
The corresponding velocity will be written as follows
Vi = —(va/By) / By explik - v — w(k)t]dk. (3.35)

The energy density is = pV?/2 + B?/8r, which gives
Su=u—ug=pVy?/2+ By - B, /4n + B} /87,

while the total energy is
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The second term vanishes because of the oscillations of the integrand. The other two
terms become

U= /(povi/QBg +1/87)|By|?dk
which allows to define the quantity
Uy = |By|?/4n (3.36)

as the Alfven wave energy. Thus, in the Alfven wave the energy density of plasma
motions equals the energy density of the magnetic field.

3.6 Summary

3.7 Problems

PROBLEM 3.1. Aninfinitely long cylinder of plasma, with the radius, carries current with
the uniform current density = Jz along the axis. Find the pressure distribution required for
equilibrium.

PROBLEM 3.2. Magnetic field is given a3 = B tanh(z/d)y. Find the current and density
distribution ifp = Cp7.

PROBLEM 3.3. A plasmais embedded in a homogeneous gravity fieldow the equilibrium
conditions are changed.

PROBLEM 3.4. A plasma with the conductivity is embedded in the magnetic field of the
kind B = yBjtanh(z/D) att = 0. Find the magnetic field evolution if there is no plasma
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flows.

PROBLEM 3.5. Derive the phase and group velocities for both magnetosonic modes.

PROBLEM 3.6. Express the conditiof{(1/c)(0FE/0t)| < | rot B| with the use of the Alfven
velocity.

PROBLEM 3.7. Derive the dispersion relations fof = v 4.

PROBLEM 3.8. Determine the magnetic field of a cylindrically symmetric configuration as
a function of distance from the axifB(r) = B.(r)2 + B,(r)¢. Assume a force-free field
configuration ofrot B = aB, wherea = const.

PROBLEM 3.9. Derive dispersion relations for MHD waves in the case when the resistivity
n=1/c #0.

PrROBLEM 3.10. Calculate the ratio of plasma pressure perturbation to the magnetic pressure
perturbation for magnetosonic waves ?

PROBLEM 3.11. Find the electric field vector for MHD waves.
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Chapter 4

MHD discontinuities

MHD describes not only small amplitude waves but also large amplitude structures. In
this chapter we shall study discontinuities.

4.1 Stationary structures

A wave (or structure) is said to be stationary if there is an inertial frame where nothing
depends on timg,0/0t) = 0. Moreover, in most cases it is assumed that all variables
depend on one coordinate only. Let us choose coordinates so that everything depends
only onz. ThenV = (9/0x) and the MHD equations can be written as follows:

%(PVQ) =0, 4.1)
0 0 B?

vaa—xvx - (p + 8_7T) ) (4.2)
0 B, 0

pVx%VL = E%BJJ 4.3)

0

B (B,V. -V,B,) =0, (4.4)

where L stands for andz components, anf8, = const because div B = (0B, /0x) =
0.
Egs. (4.1)-(4.4) can be immediately integrated to give

pV, = J = const (4.5)
B2
pVZ+p+ <~ =P =const (4.6)
T
B
PV, V| — 4—””BL = G = const 4.7)
T
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B, V, —V,B, = F = const (4.8)

These equations are algebraic, that is, if we find some solution it will remain constant
in all space, for alk:, unless MHD is broken somewhere.

4.2 Discontinuities

One way of breaking down MHD is to allow situations where the plasma variable change
abruptly, that is, say(x < 0) # p(x > 0), while both are constant. In this case the
variable is not determined at= 0. In fact, we have to allow such solutions in MHD
since magnetohydrodynamics is unable to describe small-scale variations. On the other
hand, (4.5)-(4.7) are nothing but the mass and momentum conservation laws, while (4.8)
is simply a manifestation of the potentiality of the electric field in the time-dependent
case, so that these equations have to be valid even in the case of abrupt changes.

Let us now rewrite (4.5)-(4.8) as follows:

JIVa] + [p] + [%} =0, (4.9)
JV.] = %[Bl], (4.10)
B,[Vi] =[V.B.], (4.11)

where[A] = Ay — Ay = A(z > 0) — A(x < 0), andJ = p1 Vi, = paVa,.
Let us first consider the case whén= 0, which meand/, = 0. In this case

If B, # 0then[V,] = 0, and possiblyp] # 0. Thus, the only difference in the plasma
state on the both sides of the discontinuity is the difference in density (and temperature,
as the pressure should be the same). By choosing the appropriate reference frame,
moving along the discontinuity, we can always make = 0, so that there no flows at
all, and everything is static. This iscantact discontinuityand it is the least interesting
among all possible MHD discontinuities.

If B, = 0thenitis possible thgd/, | # 0, so that in addition to different densities
at the both sides, the two plasmas are in a relative motion along the discontinuity. This
is atangential discontinuityln both types the magnetic field does not change at all.

The situation changes drastically wheén# 0, that is, there is a plasma flow across
the discontinuity. Let us consider first the case whgfe= 0, that is, the density does
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not changes across the discontinuity. This immediately mé&ans= 0 too, so that
V, = const and from (4.10)-(4.11) we get
B,
pVelVi] = B,
BI[VJ-} = Vx[BJ_]:

which meand/? = B2 /4rp, that is, the velocity of the plasma is equal to the interme-
diate (Alfen) wave velocity. Hence, the discontinuity is calledAdiven discontinuity

Since in this structure the magnetic field rotates while its magnitude does not change
(the velocity rotates t00), it is also calledatational discontinuity

4.3 Shocks

The last discontinuity/ # 0 and[p] = 0 is called ashock(explained below) and is the
most important, therefore we devote a separate section to it. For the reasons which well
be explained later we shall assumg/p; > 1, andV, > 0, so thatV}, > V,,. Itis
easy to show thaV;, V;, By, and B, are in the same plane. We choose this plane as
x — z plane, and the reference plane so tWat = 0. Eventually,B,, = B, = 0, and
Vay = 0.

In what follows we shall assume that all variables:at 0 (upstreamindex 1) are
known, and we are seeking to express all variables:at) (downstreamindex 2) with
the use of known ones. With all above, one has

P2 Vvlm
p2_ Nz 4.12
P1 ‘/290 ( )
B2 B?
pViVar +p2+ 2 = Vi + i+ (4.13)
B2 B2
(4_; - pl%z%z) BZz - (4_7: - ;01‘/12x> Blz7 (414)

We shall now introduce some notation which has a direct physical sensé&., |-et
B, cos andB;, = Bysinf, whereB,, is the total upstream magnetic field, ahis the
angle between the upstream magnetic field vector and the stoocial We define also
the upstream Alfven velocity as, = B2/4mp;, and theAlfvenic Mach numbeas

M = Vi, Jva. (4.15)

We shall assume thgolytropicpressurey o« p” and introduce3 = 87p; /B2. We shall
further normalize (4.12) -(4.14) by substituting = p»/p; andb = B,./B,, to get
finally

1 1] b? 1] sin? 6

— N +—— =1 g 4.16
N aet Tar T Tar T o (4.16)
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cos? 6 1 cos? 0 .

Thus, we reduced our problem to the finding\of= p,/p, andb = B,, /B, as functions
of M, 6, andp.

In what follows we consider only the simplest cases, leaving more detailed analysis
for the advanced course or self-studies.

Parallel shock,# = 0. In this casesinf = 0 andb = 0: the magnetic field does not
change, and the only condition remaining is

1
f(N>:N+2]\‘;2NV:1+2]\‘;2'

[ There is always a trivial solutio’v = 1 which means that nothing changes - no shock
at all. The functionf(N) — co whenN — 0or N — oo (y > 0!). Thus, there is
always another solution. In order that this solutione> 1 the derivative we have to
require thatlf /dN < 0 at N = 1, so that

M? >3 = Vi > vl =yp1/p1. (4.18)

This relation means that the upstream velocity of the plasma flow should exceed the
sound velocity. This is exactly the condition for a simple gasdynamical shock formation,
and this is quite reasonable since the magnetic field does not affect plasma motion at
all. Yet we have to explain whyw > 1 was required. It appears (we are not going

to prove that in the course) that in this case entropy is increasing as the plasma flows
across the shock, in accordance with the second thermodynamics law. In the opposite
case,N < 1, the plasma entropy would decrease, which is not allowed,

Perpendicular shock,f = 90°.  In this case the magnetic field plays the decisive
role. We get = N, and

1 3 N? B+1
N = — NV :1 .
F(N) N+2M2 Jr2M2 + 2M?

The same arguments as above give

M? > 14+78/2 = Vig > (/o] + 02, (4.19)

which means that the upstream plasma velocity should exceed the fast velocity for per-
pendicular propagation.
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4.4 Why shocks ?

Imagine a steady gas flow emerging from a source, and let this flow suddenly encounters
an obstacle. The flow near the obstacle has to change in order to flow around. For the
flow to re-arrange itself it should be affected in some way by the obstacle. In other
words, those parts of the flow which should change must get information about the
obstacle position, size, etc. The only way such information can propagate in the gas
is by means of sound waves. That is, when the flow comes to the obstacle, the latter
send sound waves backward (upstream) to affect those parts of the flow which are still
far from the obstacle, to let them have sufficient time to re-arrange their velocity and
density according to what should occur near the obstacle. The sound velogity is
relative to the flow. If the flow velocity i3/, and sound has to propagate upstream
(against the flow), its velocity relative to the obstacle would be V. It is obvious that

the flow velocity near the obstaclesabsoni¢cV < v, so that sound waves can escape.

If the flow velocity is subsonic everywhere, sound waves have no problem to reach the
flow parts at any distance from the obstacle (that depends only on the time available)
thus allowing the whole flow to re-arrange according to the obstacle requirements. As
a result, in the steady state the gas parameters change smoothly from the source to the
obstacle.

If, however, the gas flow isupersonicV > v, far from the obstacle, those parts are
not accessible by sound waves, singe- V' < 0, which means that sound is dragged
by the flow back to the obstacle. Yet the flow velocity at the obstacle itself must be
subsonic, otherwise the gas could not flow around the obstacle. The only way to achieve
that in hydrodynamics is to have a discontinuity, at which the gas velocity abruptly drops
from a supersonic velocity to a subsonic one.

The same arguments work for MHD, except in this case MHD waves play the role of
sound wave: whenever the plasma flow exceeds the velocity of the mode which is sup-
posed to propagate information upstream (fast mode in our perpendicular case above),
a shock has to form, where the plasma flow velocity drops fsoiper-magnetosonic
to sub-magnetosonicAs in the ordinary gas, this velocity drop is accompanied by the
density and pressure (and temperature and entropy) increase. Thus, the primary role of
a shock is a) to decelerate the flow from super-signal to sub-signal velocity, and b) con-
vert the energy of the directed flow into thermal energy (in plasma also into magnetic
energy, since the magnetic field also increases).

Of course, real shocks are not discontinuities but have some width, which is deter-
mined by microscopic processes at small spatial scales. At these scales gasdynamic or
MHD approximations fail and have to refined or completed with something else (e.g.
viscosity in the gas or resistivity in MHD) related to collisions (in the gas) or com-
plex electromagnetic processes in collisionless plasmas. The tatiiesionlessshocks
play the very important role of the most efficient accelerators of charged patrticles in the
universe.
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4.5 Problems

PROBLEM 4.1. Consider a parallel shod8, = 0 and show thaps/p1 < (v +1)/(y —1).

PROBLEM 4.2. What are the conditions faB,; = 0 but B;, # 0 in a shock ? For the
opposite case ?

PROBLEM 4.3. Is it possible that the magnetic field decreases across a shock ?

PROBLEM 4.4. For an ideal gas entropy (per unit massy/p”. Show that entropy does not
change in small-amplitude waves but increases across a chock (consider parallel shocks).
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Chapter 5

Two-fluid description

In this chapter we learn to improve our description of plasmas by analyzing motion of
each plasma species instead of restricting ourselves to the single-fluid representation
(MHD).

5.1 Basic equations

In order to not complicate things, we assume that our plasma consists of only two
species: electrons and ions. Each species constitutes a separate (charged) fluid, so that
we shall describe them by the following parameters: number densityarticle mass
mg, particle chargey,, fluid velocity V;, and pressure,. Heres = e,7. In addition
there are electric and magnetic fields present, which are related to the plasma.

Since each species is a fluid by itself it should be described by the equations similar
to what we have already derived:

%ns + V- (n,V;) =0, (5.1)
NsM (%V; + (V5 - V)‘@) = —Vps +n.q(E +V, x B/c), (5.2)

where we have included the electric force now, since each fluid is charged.

These equations should be completed with the state equationg like p,(n;),
and Maxwell equations in their full form withe the charge and current densities given as
follows

p=_ N (5.3)

j - ZHSQS‘/;a (54)
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These charge and current enter the Maxwell equations, producing the electric and mag-
netic field, which, in turn, affect fluid motion and, therefore, produce the charge and
current. Thus, the interaction between electrons and ions occurs via the self-consistent
electric and magnetic fields, and the necessary bootstrap is achieved.

5.2 Reductionto MHD

Somehow we should be able to derive the MHD equations from the two-fluid equations,
otherwise there would be internal inconsistency in the plasma theory. We start with
the mentioning of one of the condition of MHD, namely, quasi-neutrality, which means
p=>_,mnsqs = 0. Notice now that summing (5.2) for electrons and ions we get

0 .
;nsms <5V; + (Vs V)V;) = —V() ps.) +pE+j x B/,

S

and we should drop the electric term in view of the above condition. The right hand side
now looks as it should be if we notice that= ) _p; is the total plasma pressure. The
left hand side still does not look like it was in the MHD case. Before we proceed further
we rewrite the obtained equation in another form (see (2.12)):

0 0 0 ‘
a Z(nsmsv:%) + % Z(nsms‘/;i‘/sj) = _(%cp + EijkjjBk/C
j i

s

s

The quantityp,, = >, nsm, is nothing but the mass density, ahd,(n,m;V;;) is
nothing but the momentum density, thus the mass flow velocity should be defined as

V= Z(nsms‘/;)/pv p= Znsms~ (55)

Now the sum of the (5.1) multiplied by, gives the mass flow continuity equation (2.5).

We have yet to make the terin (n,m,V;;Vs;) look like pV;V;, if possible. Here
we have to be more explicit. Let us write down the obtained relations {, 2 instead
of i, e here for convenience):

nimi Vi +name Vo = pV,
niqi Vi +neq2Vo = 3,

from which it is easy to find

Vv _ i
V, = PY2 J
n1m1(92 —91)
Vi
V, = PI1 J

n2m2(91 - 92)
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whereg, = ¢;/m,. Proceeding further, we find

N R
n1m1(92 - 91)7

Vi=V-

where we have taken into account thatn;g; + namogs = 0. After substitution and
some algebra we have

S (e VaVig) = pViVy + piids

nanmlmg(gl - 92)2’

s

which is not exactly what we are looking for. This means that MHD is an approximation
where we neglect thg; term relative tol’V term. Let us have a close look at this
negligence when, = —q; = e, m; = m; > my = m,, n; = ny (€lectron-ion plasma).

In this casey; < |g2| = ¢/m., and thejj term takes the following form

IOJ’LJJ me
n2e?m;

and can be neglected when
Jj < neVy/m;/me,

that is, when the current is not extremely strong.

5.3 Generalized Ohm'’s law

Let us focus on the electron-ion plasma where< m;. For simplicity we also assume
quasineutralityn. = n; = n, which happens when motion is slow and electrons can
easily adjust their density to neutralize ions. Usihg= ne(V; — V) we substitute

V. = V; — j/ne into the electron equation of motion and get

d 1 1
meﬁz_e(EJrVi x B/c)+ —j x B — —gradp, (5.6)
dt nc n

or

1 1 . dV,
E+V,xBjc=—jxB— —gradp, — <27
nec en e dt

The expression (5.7) is known as the generalized Ohm’s law. If there was no right hand
side (zero electron mass, cold electrons, weak currents) it would be&bméd/; x

B/c = 0. Since in this limit the single-fluid velocity” = V;, this is nothing but the
Ohm’s law in ideal MHD. The terms in the right hand side of (5.7) modify the Ohm’s
law, adding the Hall term (first), the pressure induced electric field (second) and the
electron inertia term (third).

(5.7)
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5.4 Problems

PROBLEM 5.1. Let¢, = —q; andmy = m;. Derive single-fluid equations from two-fluid
ones in the assumption, = n; (quasineutrality).

PROBLEM 5.2. Derive generalized Ohm’s law for a quasineutral electron-positron plasma.

PROBLEM 5.3. Write down two-fluid equations when there is friction (momentum transfer)
between electrons and ions.

PROBLEM 5.4. Derive the Hall-MHD equations substituting the ideal MHD Ohm’s law with

1
E+V xB/c=—jxB
nec

PROBLEM 5.5. Treat electrons as massless fluid and derive corresponding HD equations for
gquasineutral motion.
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Chapter 6

Waves In dispersive media

In this chapter we learn basics of the general theory of waves in dispersive media.

6.1 Maxwell equations for waves

Whatever medium it is, if propagating waves are of electromagnetic nature they should
be described by the Maxwell equations (2.18)-(2.19). We already know that the two
other equations are just constraints, and once satisfied would be satisfied forever. The
vacuum electromagnetic waves are discovered vwgherD. It is rather obvious that the

"only" influence of the medium is via the current In general, this current should in-

clude also the magnetization current, and can be nonzero even without applying external
fields, like in ferromagnets. Although the theory can be developed for these cases too,
for simplicity we shall limit ourselves with the situations where the curreindacedby

the fields themselves, that is, in the absence of the fields (except constant homogeneous
fields for whichrot = 0 and(9/0t) = 0) the currentj = 0.

We start again with an equilibrium, where the only possible field is a constant ho-
mogeneous magnetic field, = const. Let us assume that the equilibrium is perturbed,
that is, there appear time- and space-varying electric and magneti€&feid B. These
fields induce currenf which we shall consider as being a functionif(since B and
FE are closely related it is always possible). In generahay be a nonlinear function of
E. However, if the fields are weak, we can assume that the induced current is weak too
and is linearly dependent on the electric field. In a most general way this can be written
as follows

G ) = / Aoy, v £ ) (! ¢ )t 6.1)
Thus, current "here and now" depends on the electric field in "there and then". The

simplest form of this relation implied,; = ¢d;;6(r — r')d(t — t') and results in the
ordinary Ohm’s lawj = oFE. The functionA is determined by the features of the
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medium and does not depend Bh
If the equilibrium is homogeneous and time-stationary, the integration kernel should
depend only om — 7’ andt — t'. In this case one may Fourier-transform (6.1),

G ) = / ik, w) expli(ke - 7 — wt)]dkedw, (6.2)

to obtain
ji(k,W) = O_ij(k,W)Ej(k,W). (63)

whereo;; is theconductivity tensar
We proceed by Fourier-transforming the Maxwell equations (2.18)-(2.19) which
givesB = ck x E/w (we do not denote differently Fourier components) and even-

tually
k?262 k‘ik’jC2

DijEj = Féw — w2 — 62‘]' Ej = O, (64)
where we have defined tlkelectric tensor
i
Eij = 5ij + %ZO'Z']‘. (65)

Expression (6.4) is a set of homogeneous equations. In order to have nonzero solu-
tions for F; we have to require

which is known as a@ispersion relation The very existence of the dispersion relation
means that the frequencyof the wave and the wave vectkrare not independent. This
is quite natural. Indeed, even in the vacuum the two are related-ag.c. All effects
related to the medium are in the dielectric tensp(or in o;;).

Thus, the only perturbations which can survive in a dispersive medium should be
x expli(k - r — w(k)t)], where we emphasize the dependence of the frequency on the
wave vector.

6.2 Wave amplitude, velocity etc.

OnceD = 0 the rank of the matribX);; reduces to 2, which means that we are left with

only two independent equations for three components of the electric field. As usual, it
means that one of these components can be chosen arbitrarily, while the two others will
be expressed in terms of the chosen one. Warning: the above statement is not precise
and not any component can be chosen as an arbitrary one in all cases. Once we have
chosen one component we shall refer to it aga&e amplitudeThis is rather imprecise
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and a more rigorous definition would be based on some physical concepiydike
energy This will be considered in an advanced section below.

Let e;(k) be theunit vector corresponding to the wave with the wave veétoit
is called a polarization vector. The electric field corresponding to this wave can be
written ask; = a(k)e;(k), wherea is the amplitude. The general solution for the wave
(Maxwell) equations in the dispersive medium is

Eyr.1) = / a(k)es(k) explilk - 7 — w(k))dE. 6.7)

There is no already integration oversince it is determined bk. Let initially, att = 0,
the electric fieldE = Ey(r). Then

Eiy(r) = /a(k)ei(k:) explik - r|dk. (6.8)
and the amplitudes may be found by inverse Fourier-transform:
a(k)es(k) = (27) / () exp|—ik - rldr. 6.9)

Further substitution into (6.7) would give the electric field at all times.

The form® = k - r — wt is the wavephase The Considerin@ as an instantaneous
function ofr, the normal to the constant phase surfagaue fronj would be given by
n = grad ®/| grad ®| = k/k. Itis clear that the constant phase surfaces in our case are
planes perpendicular te, hence the wave is plane wave Let us consider the same
constant phase surfaced== ®, at moments and¢ + dt, and letds be the distance
between the two planes along the normal. Then one has

k- (dsn) —wdt =0,

so that the velocity of the constant phase surface, the so-gdise velocitys

a5~ Yk (6.10)

T

The phase velocity describes only the phase propagation and is not related to the energy
transfer. Thus, it is not limited from above and can exceed the light speed. It is worth
noting thatn = kc/w = ¢/vy, is the refraction index.

In order to analyze propagation of physical quantities we have to consigave
packet Let us assume that initial perturbation exists only in a finite space region of
the size|Ar|. The uncertainty principle (or Fourier-transform properties) immediately
tells us that the amplitude(k) should be large only in the vicinity of sonie,: for
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|k — ko| > Ak the amplitude is negligible. Heté\k - Ar| ~ 1. Let us assume that in
this rangev (k) is a sufficiently slowly varying function, so that we can Taylor expand

Ow 0*w
w(k:) = W + Ri——— + %IiiﬂjM,

0 (6.11)

wherek = k — ko, wy = w(ko), and all derivatives are takenfat= k,. Then the wave
packet at momentwould take the form

Ei(r,t) = /a(k)ei(k) expli(k - —w(k)t)|dk

= expli(ko - 7 — wot)] /a(h;)ei(n) explik - (r — v,t)] (6.12)
0w

. exp[—(i/Q)/—@i/ij]

dk =~ exp(i®)E;p(r — v4t),

where thegroup velocityv, = (dw/dk), that is,v,; = (Ow/0k;), and in the last line

we neglected the second derivative term in the exponent. Thus, the velgeipproxi-
mately corresponds to the motion of the initial profile. It can be shown that the second
derivative term describes the variation of the profile shape. It should be sufficiently
small (shape does not change much when the whole profile moves) in order that the
group velocity be of physical sense.

6.3 Wave energy

Let us define .

Di(r,t) = Ei(r,1) +47r/ Gt (6.13)
wherej; is theinternal current, that is, the current produced by the same particles which
are moving in the wave. In general, external (not related directly to the wave) currents
can be present, that i$,= Jiu: + Jext- Since

t
ji = / dt, / dr’aij('r — T/,t — t,)Ej (7’,7 t,) (614)
and, respectively,
Jilw, k) = 0i5(w, k) Ej(w, k) (6.15)
we can write .
D; = / " / dr'eij(r — v/, t —t)Ei(r'.t) (6.16)
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and
Di(w, k) = €;j(w, k) Ej(w, k) (6.17)
where

i
eis(w, k) = 6, + Zalj(w k) (6.18)

The current equation takes the form

D
W =crot B + 47Tje:pt- (619)

Multiplying this equation byF, the induction equation b¥8 and summing up we get

1 oD 1 0B
—F B

me e T e
- i(E tot B — B - t0t E) + 47E - jont (6.20)

_ _i div(E X B) +47E - jou.

Averaging this equation over a volume large enough relative to the typical length of
variations (much larger than the wavelength) we get

aD 0 B
_/Lm ot aw}dv

= —/ yy div(E X B)dV +47E - jex (6.21)
v

™
L [ G(Ex B)-dS+47E - j
-V Jan V(E x B)-dS +ATE - jeq

The first term in the right hand side is the energy flux outward from the volume. The
second term is the work done by the wave electric field on the external currents. There-
fore, the left hand side should be interpreted as the rate of change of the wave energy.
Let w be the typical frequency of the wave. The wave energy change implies the wave
amplitude change. For a monochromatic wave

Ei(r,t) = E;exp(ikr — iwt) + E; exp(—ikr + iwt) (6.22)
where E; = const. There is no energy change of a monochromatic wave. In order

to allow energy variation we have to assume thatlepends on time weakly, so that
(1/E)(0F/0t) < w. In other words,

Ei(r,t) = /dwEi(w)Ei exp(ikr — iwt) + E; exp(—ikr + iwt) (6.23)
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where|w — 0| < w. Since we are interested in slow variations, in what following we
have to analyze
1 oD 1 OB

E B

wE ot w8 o

(

L fa(Lp2Dy Lp 08 024
T 4 Ot Am Ot
whereT > 1/w.
We shall perform calculations in a more general way. Let
Ei(r,t) = / dwdk (E;(w, k)e'*™") 4 Ef (w, k)e~(Fr=) (6.25)
wherew > 0. Then
Di(r,t) = [ dwdk (¢;;(w, k)E;(w, k)e'kr—«?)
(rot) = [ dh ey ) B ) 626
+ € (w, k) E; (w, k:)e_i(kr_“t))
This expression uses the relation
eij(—w7 —k) = efj(w, k)
Now
oD / / i(kr—wt) * —i(kr—wt)
E. 5 = dwdw'dkdk' (E;(w, k)e + Ef (w, k)e )
i (eij (w/7 k’)Ej(w’, k/>ei(k/r7w/t) (627)

i 62}-(&)/, k:')E;‘(u/, k/)@—i(k“r—w’t))

When averaging over large volume this results<ine’®*=*)7 ~— §(k — k). Let us
write
Gij = 65 -+ 6;} (628)

where the Hermitian part satisfies

(f " (6.29)

A= At (6.30)
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so that

< E /dwdw'dk: (w,k)Ef (W', k)
e ilw—) Hw'ei (W' k) — weji(w, k))

Z/ dwdw'dk(E;(w, k)E; (W' k) (6.31)

e ilw—w ( (w k:) — we; (w k))
—/dwdw’dk(Ej(%k)E:(w/’k)
) e—i(w—w')t(w’efj(w/, k) + wEf}(w, k))

Here we dropped the terms withp[+i(w+w’)t] since, when averaging ovér> 1/w,
these fast oscillation terms vanish. On the other hand, the termsxyithi(w — w')t]
survive whenw —w'|T' < 1, thatisw’ ~ w. Itis worth emphasizing that exact equality
is not required since the variation time|w — «'| is larger than the averaging time. In
this case we can Taylor expand:

O (b
oy (weii (w, k)

Weli (W k) —wel(w, k) = (W —w)o—
and
W' (w k:)—l—we (w, k) = 2wel (w, k)

The term with the anti-Hermitiaa* is responsible for the intrinsic nonstationarity of the
way amplitude. In the thermodynamic equilibrium it describes the natural dissipation
of the wave energy. We shall not consider it here. For the rest of the expression notice

that
d

_e—i(w—w’)t

dt

Z-(w/ _ u‘))e—i(w—u/)t —

and therefore (restoring all integrations)

oD d . 0 i
/VdVE iRy dwdk(E;(w, k)E; (w,k)% (weii (w, k)) (6.32)

For a wave with the dispersion relatian= w(k) one has
Ej(w, k)E} (w, k) = Ej(w(k), k) E; (w(k), k)i (w — w(k)) (6.33)

so that we get

oD d . 0 I
/VdVE o T dt/dk(Ej(ka)Ez‘ (w,k)a—w (weij (w, k)) (6.34)
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where noww is not independent by has to be found from the dispersion relation.
Now we see that the wave energy can be identified as

U = 3 (weg(w’ k)) Ej(w7 k>Ez*(w7 k) + Bi(w7 k>Bz*(w7 k)

Ow 47 47 (6.35)
wherew = w(k). Let us now take into account that
k’iC
B; = eijen; Bk, ng = o
so that
B (w, k)B},(w, k) .
471' = (n25ij — nmj)EzEJ
and
0 E,E}
U = [n2§ij — ninj -+ a—w(WEg)]i—ﬂ_
10 E,E}
= n20,; — myn; — el + = (W) =L=2L 6.36
[n%05; — nin; — €5 + P (w’e;;)] . (6.36)
10, 4, g EiE}
EPFELA e

since(n®d;; — nyn; + €/])E; = 0 because of the dispersion relation and only the Her-
mitian part ofe;; is implied. If we now represent the wave electric fieldas= Eé;,
whereF is the wave amplitude, anq is the wave polarization (unit vector), one gets

(6.37)

6.4 Problems

PROBLEM 6.1. Given the initial profile ofA(z,t = 0) = Agexp(—2?/2L?) and the disper-

44



CHAPTER 6. WAVES IN DISPERSIVE MEDIA

sion relationv = +kwv, find the wave profile at > 0.

PROBLEM 6.2. Same profile but does not depend on

PROBLEM 6.3. Same butv = +ak?2.

PROBLEM 6.4. Same buto? = k202 /(1 + k2d?).

PROBLEM 6.5. Givenn(w) find the group velocity.

PROBLEM 6.6. What are the conditions ofaw/dk) and(d?w/dk?) when group velocity has
physical sense ?

PROBLEM 6.7. In what conditions initial discontinuity propagates as a discontinuity ?
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Chapter 7

Waves in two-fluid hydrodynamics

In this chapter we apply the theory of waves in dispersive media to the cold two-fluid
hydrodynamics.

7.1 Dispersion relation

Let us consider a plasma consisting of two fluids, electrons and ions. We shall denote
species with index = e,7. For simplicity we consider cold species only, so the the
corresponding hydrodynamical equations read

on

pr + div(nsV;) = 0, (7.2)
oV,
mm(3;+m;ww):qu+mth) (7.2)

In the equilibriumn, = ny, V, =0, E = 0, andB = By. As usual, we write down the
Fourier-transformed linearized equations for deviations from the equilibriy(k, w),

Vi(k,w), E(k,w) (we do not need perturbations of the magnetic field):

Ny = ngok - f/;/w, (7.3)
—iwV, = gJ(E + V. x By/c), (7.4)
whereg; = ¢s/m,. Our ultimate goal is to find the currejit= P nsoqs Vs, SO that we

do not need (7.3). In order to solve (7.4) let us choose coordinates sBthat B, 2
and rewrite the equations as follows:

—iwV,, = g E., (7.5)
— WV, — QS‘N/Sy = gsEr, (7.6)
- Z.W‘;tsy + Qs‘;tsx = gsEy7 (77)
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where(), = g,B,/c is the speciegyrofrequencyEquation (7.5) is immediately solved:
V,.="2F. (7.8)

The other two components are most easily found if we define- F, + z‘lEy, and
Vi =V, +1ilV,, wherel = 1. Then (7.6) and (7.7) give

_Z<w - le)f/sl - gsEla
and, eventually,

- ng ~
AR ) 7.9

Proceeding further, one has

Var - ilViy = =2 (w + 1) Ey

ig s ) ) ) ) (7.10)
= o |WEs +iUE,) + U(wE, — iQE,)
so that eventually we get
¥ igsw . ngs -
Ve = 02 — QE E, — w2 — Qz Y (7'11)
¥ gsgs r— igsw a
Vey = = E,. + o QQEy. (7.12)
Respectively, the current will take the form
. igs”sOst - gsnsoqus ~
Je = sz@)&_( FT@>%’ (713
. gsnsOqus r- igsnSOQSw -
j, = STy ) E, + (Z Ty > E,, (7.14)
j, = Z zgs7z)soq3> Ez- (7.15)
Now, using the definitions af;; ande;; we can arrive at the following dielectric tensor
€1 iG 0
€ij = —iG €1 0 5 (716)
O O GH
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w2,
6J_:1—|—<E Qwa2>7 (717)
w2 Q)
_ ps™ ™S
G — (Z :—W(Qg_m)’ (7.18)

€ =1~ (Z C:i) , (7.19)

4ns0q?
Wl = TO (7.20)
It is convenient to choose coordinates so that (k. ,0,k)) = k(sinf,0,cos0),

wheref) = Eo\k is the angle between the wave vector and the equilibrium magnetic
field. Then the dispersion equation will take the following form

n?cos’0 —e;, —iG  —n?sinfcosb E,
iG n?— e, 0 E, | =o. (7.21)
—n?sinf cosd 0 n*sin’*6 — ¢ E,

Before we analyze the complete dispersion relation (determinant) let us consider special
cases.

7.2 Unmagnetized plasma

In this caseB, = 0 and, therefore{), = 0 andG = 0. Moreover,e, = ¢. Since
the dielectric tensor is isotropie;; = ¢|6;;, dispersion relations cannot depend on the
direction, and we may choose= 0. We get two identical dispersion relations (for
E, # 0 and forE, # 0) which give

w? = wf) + k2, wﬁ = waw, (7.22)

with the phase velocity,, = c¢,/1 + w2/k?c? > c and group velocity,, = c/v,;,. The

wave is transversdy | k and purely electromagnetic. There is no density perturbation.
The lowest possible frequencyds.

The third dispersion relation is faf, # 0 and givesw = w,. This longitudinal
wave, E || k is the density perturbation waves and is called Langmuir wave.

7.3 Parallel propagation

In this cased = 0. The determinant is
D= ((n*—e€)*—G*) ¢ =0. (7.23)
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The solutione; = 0 corresponds to the Langmuir wave wiify # 0. The two other
correspond td&, = +iF, (circular polarization) ana* = ¢, + G:

2 %2;' w?,
=1 s - . 7.24
w((l —w) w2 +w) (7.24)
w2< wz
n =1 o — 7.25
W+ Q) T W -w) (7.23)
For a simple electron-proton plasma= e, ¢. = —e, m;/m. ~ 2000 > 1. We have
‘Qe|/QZ = mi/me! wpe/wpi = \V/ mi/me, and
wf,e _ W_;Qn
Q] Q7
Wpe _ Me Wy

Low frequencies In the rangev < §2; Taylor expansion gives for both modes

2

n? =1+ % (7.26)
or (for the typicalv,; > ;) w = kcQ); /w,; = kva, where
02 e B?
A wgi C dangmy

High frequencies In the rangew > Q.| Taylor expansion gives for both modes
n* =14 wy, /w*, thatis, electromagnetic modes in an unmagnetized plasma.

Intermediate frequencies In the range?; < w < |Q2.| one has only one mode

n2 — Wﬁe _ wii
W] Witk

This is so-calledvhistlerw = k*c*Q; /w?;. This is wave is strongly dispersive, k.

7.4 Perpendicular propagation
In this casecos 8 = 0 and we have either
n®=e¢
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which is the electromagnetic wave like in the unmagnetized plasma, or

2

2_ G
n =€ — —.
€L

In the low frequency range; < );, we getw = kc);/w,; = kva,

7.5 General properties of the dispersion relation

It is easy to see that in general case the dispersion relation for (7.21) takes the form

A(w)n* + B(w)n® + C(w) =0, (7.27)

where

A =g cos? 0 + € sin® 0,
B =G*sin®0 — e, (e + A),
C=¢e] — G?).

Thus, there are two solutions faf, in general. It can be shown that these solutions
are real. The regions wher@ < 0 correspond tmon-transparencythe corresponding
mode does not propagate in this range.
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7.6 Problems

PROBLEM 7.1. Derive dispersion relations for electrostatic waves propagating along the
magnetic field taking into account the electron and ion pressure.

PROBLEM 7.2. Find cutoff frequenciesi(— 0) for parallel and perpendicular propagation.

PROBLEM 7.3. Show that waves become longitudind, || k, whenn? — oo and find
frequencies of these oscillations (resonance frequencies).

PROBLEM 7.4. Derive dispersion relations for an electron-positron plasma.

PROBLEM 7.5. Let a plasma consist of electrons amb ion species. Derive the dispersion
relation for waves propagating in the direction parallel to the magnetic field. What is new ?

PROBLEM 7.6. An electromagnetic wave propagates in the vacuum in the direction perpen-
dicular to the vacuum-plasma interface. There is no external magnetic field. The wave frequency
w < wy. Describe the electric field in the plasma.

PROBLEM 7.7. A linearly polarized electromagnetic wave of frequencys || enters a
column of plasma along the external magnetic field. Calculate the rotation of the electric field
vector upon crossing the plasma.

PROBLEM 7.8. Describe the polarization of obliquely propagating waves.

PROBLEM 7.9. Letm. — 0. Derive the corresponding dispersion relations.
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Chapter 8

Kinetic theory

In this chapter we learn a more detailed method of plasma description.

8.1 Distribution function

In the hydrodynamic description of plasma we forgot about different velocities of plasma
particles and described it with the help of averaged quantities only: density, hydrody-
namical velocity, and pressure. In this description the only reminder of the random
(thermal) motion of particles was pressure. A more sophisticated description would
give us information about different particle motion, at least at some level of averaging.
The approach is in some sense similar to the hydrodynamical density approach. Indeed,
densityn(r, t) is nothing but the indication that the number of particles within the vol-
umedY = d3r is dN = n(r,t)dV at the moment, if we properly average fast and
small scale fluctuations. The last means thatmysicallyinfinitesimal volume should
contain a large number of particles, and that the time averaging is over the time which
is much larger than any time required for any microscopic relaxation process.

Following this principle, we consider the phase spéecgp) and define a phase
space density, which is more often calldstribution function as follows: dN =
f(r,p,t)d>rd®p is a number of particles in a physically infinitesimal volume of the
phase space.

In a more conservative wayi, is often defined as a probability for a particle to be in
the phase space volundérd®p, so that/ fd*rd®*p = 1, when the integration is over
the whole phase space. We shall use the first definition, except stated otherwise.

It is easy to see that the particle density and hydrodynamical velocity are related to
the distribution function in a simple way:

n(r,t):/fd3p, (8.1)
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nV(r,t) = /vfd3p. (8.2)

In general, an integral of the king, . . . v;,, fd®p is callednth moment of the distribution
function. Let us consider the second moment (for simplicity we restrict ourselves with
nonrelativistic particles so that = muv;):

[uitdp = [l =Vo+ Viltey - V) + Vil 'y

= / (v = Vi)(v; = Vi) fd’p + ViV, ®3)

= p;j/m+ nV;Vj,

wherep;; is the pressure tensor In the case of ideal ggs; = pd;;, wherep/m =

(1/3) [v*fd’p.

8.2 Kinetic equation

We need some tools for the description of the evolution of the distribution function. In
order to do this we recall that a particle motion is determined by Hamiltonian dynamics,
which means that the initial positior, and momentunp, completely determine, in
principle, the particle future. In other words it is stated in the form of the Liouville
theorem: the phase space volume does not change with time. The last statement means
that the total time derivative of the distribution function along the trajectory vanishes:

i of . of . Of

it ot T ar TP gp T
Taking into account that = v andp = F (force), we get the kinetic Vlasov equation
in the following form:
of of of

Gt gt g, =0 (8.5)

For the nonrelativistic plasma = mwv, andF = ¢(E + v x B/c), so that eventually
we get the equation in the form we will be using throughout:

of | Of 4 (g of _
G T (B X B) g =

If a plasma consists of several specie¥lasov equation should be written for each
distribution functionf,. The set should be completed with the Maxwell equations where

=Y a. [ 1 8.7)
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Jj= ZQS/Ufsdgv- (88)

Here we switched fronp to v properly re-normalizing the distribution function.

8.3 Relation to hydrodynamics

Let us take zeroth moment of (8.6), that is, integrate it aker We get

Of Of s /i 2
/8t —i—/ axdv+ m(El+€”kaBk/C)8vidv
3 3
815 /fd v fd’v) (8.9)
:§”+axl

which is nothing but the continuity equation.
First moment will give, respectively,

m/va—d3v+m/vavl
= ([ vafdo) +m / v )
_ qE. / fa) — Lo / v, fd) By

(an )+

(V)—O

0
/qva(E + €50 By /c) 1{ v

%

(8.10)

0
=5 o (nmV,Vi + pai) — q¢(Eq + €4i;ViBj/c) =0

which is nothing but the motion (Euler) equation.

8.4 Waves

In order to make this simple we study here only one-dimensional electrostatic wave
without external magnetic field, that is, everything will depend only ¢andt), there

will be only one,v., component of the velocity, and only ong, component of the
electric field. The corresponding Vlasov equation fill take the form

of of of
at " %a, T E “ 90,

Since we are going to study waves we have to start with the equilibrium, whete0,
(0f/0z) = 0, and(0f/0t) = 0. Thus, the equilibrium distribution should depend

= 0. (8.11)
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only onv,. We shall writefy(v.) = nFy(v.), wheren is the equilibrium density, and
| Fydv, = 1. Perturbing, linearizing, and Fourier-transforming (8.11) one has

—i(w — kv,)f = - Ezgfo. (8.12)

Following general rules, we have to calculate current density, which in this case will be
just
Znsq Uy aFWOs
- E., 8.13
<Z Mg / w — kv, Ov, > ( )

_1_2 “i v= OFbs g (8.14)

o W — kv, Ov,

and, respectively,

Herew;S = 4mn.q?/m,. The dispersion relation would read = 0.

8.5 Landau damping

The main task is to evaluate the integrals in (8.14). In order to do that we have to
decide what to do with the singularity at = w/k. The solution is theadiabatic
switch-on where a perturbation gradually exponentially increases frem —oo, that

is, B, o exp(—iwt+et), withe — +0. Technically this means substitution— w+ic,

so that the singularity is removed from realinto the upper plane of the complex.

In other words, the integral over in (8.14) is in fact a contour integral in the complex

v, plane, the contour running from = —oo to v, = oo belowthe singular point. The
same can be symbolically written as follows:

1
=P— +ind(x), (8.15)
where’P means the principal value integral

—& b
77/ Fd:c:hm(/ lex—l—/ le:c),
a x € x

andd(x) is the usual delta-function. Summarizing all this, the dispersion relation for
electrostatic waves can be written as follows

w2 00 1 F
(e [T Loy,

2

k v, —w/k Ov, (8.16)
+z'7r—a o) =0

aUZ v=w/k )
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wheree,, =1+ ) e,.

The singularityv, = w/k is calledCerenkov resonancesince now the dispersion
relation is complex its solutiow should be also complex. Let — w + iI', where
we retain notationw for the real part (frequency). Thell « exp(—iwt + I't). If
[' < 0 the wave amplitude decreases with time, that is, the wave is damped. We shall
see immediately that this is the situation in the plasma in a thermodynamic equilibrium,
where the distribution functions have the form (Maxwellian)

1

Fy = Jomon exp(—v?/2v3). (8.17)

Hereuy is the thermal velocity related to the species temperature as foltgws: 7' /m.
The integral in (8.16) cannot be calculated analytically in the whole rangg lof
Maximum of the integram% is in the range, ~ vp, so that it is reasonable to expect

that far from this region some approximations would be useful.

High phase-velocity. In this casev/k > vy and we expand

2,22
kv,  k*v:

1+ -2+
w

1 k
= — + ...
w

wlk—v, w

Substituting and integrating we find

2 2,,2
k
Ree, — — -8 (1 43 ”T> . (8.18)

w? w?

Low phase-velocity. In this casev/k < vr. We introduce a shift, = u + w/k, then

I 1 w? wu u?
= exp [ — — —
O Varor P\ T 2k22 T 22 202

8.19
- V2rup P 2k2v2 2kvZ 02 T
Since(0F,/0v,)dv, = (0Fy/0u)du, one finally finds
w2
— ps
Re €s — W (820)
Imaginary part. The imaginary part in both cases is
Vrw? w
Ime, = —2— exp(—w?/2k*v3.,). (8.21)
V2K,
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Now we are ready to investigate electrostatic waves in an electron-ion plasma, where
m;/me. > 2000 > 1. We also assume that < 7., so thatr, /vr; = (T,/T;)"?(m; /me)'/? >
1. We shall analyze separately three regions: (&) > vr., (b) vre > w/k > vy,
and (c)ur; > w/k. We are looking for waves witi'| < w (otherwise we cannot speak
about a wave). The dispersion relation is developed as follows:

e(w +iT) = 0, (8.22)
Ree(w + i) 4+ i Ime(w + i) = 0, (8.23)
Ree(w) + ifa% Ree(w) +ilme(w) =0, (8.24)
Ree(w) =0, (8.25)
['=—Ime(w) {8% Re e(w)] : : (8.26)

In other wordsw is found from (8.25), without taking into account the imaginary part
of the dielectric tensor. The growth (damping) ratés then found from (8.26) where
we should substitute which was found earlier.

High phase velocity range: Langmuir waves. In the rangev/k > vp. > vr; we
have (8.18) for electrons and ions as well, so that
w? 3k*v2,

_ pe
Ree=1— w2(1+

) =0, (8.27)

w2
where we neglected the ion contribution. The dispersion relation now reads
w? = w2, + 3k*v7,, (8.28)

and describes Langmuir waves with thermal effects taken into account. For the imagi-
nary part we have

0 2
% Ree(w) ~ o
and
r 7r1/2w3e
— = _W exp(—wze/2k’20¢2pe)
pe 71_1/2 Te (829)

_ 2,2
= _Wgr%e exp(—1/2k} rDe)

whererp. = vre/wpe = /1e/4mne? is the electron Debye radius. According to our
conditionkrp. < 1, andw ~ wy,, so that|I'|/w < 1, that is, Langmuir waves are
weakly damped.
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Intermediate phase velocity range. In the ranger. > w/k > vr; we have

2

Wy,

i

RGGZ‘ = __]32,
w

Ree, =

B,
so that we have
w2 1

Ree=1— 2 4+
w? /{227“%6

=0, (8.30)

from which we get the dispersion relation fon-soundwaves:

21.2,.2
) wm-k The
= 8.31
v 1+ k22, ( )
In the limit krp. < 1 we have
W = kvreWpi /wpe = k/T./m;. (8.32)

In the limit krp. > 1 we getw — w,,;. Since we requiredr, > w/k > vr; we have
the condition’, > T;.

Low phase velocities. In the rangev/k < vre, vr; ONE has

k De k D1

— 0, (8.33)

and we rediscover Debye screening: +il/rp, wherer,*> = 1,2 + rp:.

8.6 Problems

PROBLEM 8.1. Calculate damping rate for ion-sound waves.
PROBLEM 8.2. Derive dispersion relations for cold plasmas ushag= 6(v).
PROBLEM 8.3. Find the dispersion relation for waves in electron-positron plasma with the

"waterbag" distributionf, = 0(v3 — v?)/2vo, whered(z) = 1if > 0 andd(z) = 0if z < 0.
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PROBLEM 8.4. Derive the dispersion relation for electromagnetic wavgsl( k, B # 0).

PROBLEM 8.5. Derive the dispersion relation for electrostatic waves in a plasma consisting
of cold electrons and ions, moving with the relative velodiy
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Chapter 9
Micro-instabilities

In this chapter we learn about instabilities (spontaneous growth of perturbations) caused
by highly nonequilibrium distributions of plasma.

9.1 Beam (two-stream) instability

Let us consider a plasma consisting of two electron populations: fpgyn,é(v), and
beamf, = n,d(v — V;). We shall assume that the beam density is much smaller than
the plasma body density, /n, < 1. Itis easy to find

2 2
w w
SO I . M- 9.1
‘ w2 (w—kVp)? ©.1)

wherew? = 4mrnye®/m andw; = 4mwnye® /m. Itis worth noting thato — kVj is just the
frequency, Doppler shifted into the beam rest frame.
The dispersion relation reads

2
W, wg

w2

In the high frequency limity > kV4, one immediately has = w, (Langmuir wave).
There is no low frequency limiv <« kV;. If |w — kVy| < KV, one has

(9.3)

w2 —-1/2
w=kVy £ wy [1 SE— ]
kQ%Q

WhenkV; < w, the square root becomes imaginary. For long wave lengths< w,
one gets thgrowth rate

I'=Imw = +ikVy(ny/n,)"?
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The positive solution gives the instability: the wave amplitude grows exponentially.

WhenkV, ~ w, the growth rate goes to infinity and more accurate consideration is
necessary. Puttingly, = w,, w = w, + J, one gets

20wy

Y
Wp )

and the unstable solution reads

2 [ 1
6 = 23w, (ny/ny) "3 (— + z£>

S i (9.4)
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Chapter 10

*Nonlinear phenomena
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Appendix A

Plasma parameters

Table A.1: Parameters of various plasmas

| Source | Density, cn® | Temperature, K Composition| Magnetic field, T]|
Solar wind near Earth 1-10 10° p,e 10 nT
Fusion reactor 10% 108
lonosphere 10° 500 7
Glow discharge 10° 104
Flame 108 103
Interplanetary plasma 1 100
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