Photon Transport Monte Carlo

- Point response hypothesis
- Uniformity of response
- Summary

Physical Pulse Model

- Point response hypothesis:
 - If we know the normalized response, $f(t; \vec{x})$ due to light produced at any point (x,y,z) then the response due to a track passing through the bar is:

$$F(t) = \int \frac{dQ}{ds} f(t - s/\beta c; \vec{x}_0 + s\hat{u}) ds$$

- Simplifying assumptions:
 - dQ/ds is a constant (turns out not to be true).
 - Normalized response independent of x,y.
 - This is what we need to check.

Check Uniformity Hypothesis

- Generate 10⁵ scintillation photons at a single point (only ~500 get to the PMT)
- Determine average time at fixed threshold
- Compare points at different x,y in the bar but at constant z
- Are all the times the same?

- Generate 10⁸ photons at a fixed point in a bar of scintillator (no Winston cone).
- Where do they come out?
- Reflections off the sides create can produce complex patterns of light collection efficiency.
- Non-uniform light collection probably explains the observed biases.

Light collection is not uniform throughout

Response Uniformity (Constant Fraction)

Conclusions

- Point response hypothesis still under study.
- Significant biases simply from where the light is produced.
- The pulse shape seems to be the same.
- Can still be analyzed but needs a position dependent amplitude response.
- Fixed some bugs:
 - Default bar angle now 0.015 rad (was 0.06)
 - Speed improvement in root-finding algorithms
 - Updated to gcc 3.4.3, root 4.00/08.
 - Interfaced with SPICE simulations of front-end electronics

This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.