Physics 565 - Pauli and Dirac Matrices

The Pauli matrices are

$$
\begin{align*}
\sigma^{1} & =\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \tag{1}\\
\sigma^{2} & =\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \tag{2}\\
\sigma^{3} & =\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \tag{3}
\end{align*}
$$

and they satisfy the following identity:

$$
\begin{equation*}
\sigma^{i} \sigma^{j}=i \epsilon_{i j k} \sigma^{k}+\delta_{i j} \tag{4}
\end{equation*}
$$

in which

$$
\epsilon^{i j k}=\epsilon_{i j k}=\left\{\begin{align*}
1 & \text { for even permutations of }(i j k) \tag{5}\\
-1 & \text { for odd permutations of }(i j k) \\
0 & \text { otherwise }
\end{align*}\right.
$$

It follows that

$$
\begin{equation*}
\left[\sigma^{i}, \sigma^{j}\right]=2 i \epsilon_{i j k} \sigma^{k} \tag{6}
\end{equation*}
$$

and

$$
\begin{align*}
(\vec{\sigma} \cdot \vec{a})(\vec{\sigma} \cdot \vec{b}) & =\left(\sigma^{i} a^{i}\right)\left(\sigma^{j} b^{j}\right) \tag{7}\\
& =i a^{i} b^{j} \epsilon_{i j k} \sigma^{k}+a^{i} b^{j} \delta_{i j} \tag{8}\\
& =i(\vec{a} \times \vec{b}) \cdot \vec{\sigma}+\vec{a} \cdot \vec{b} \tag{9}\\
& =i(\vec{\sigma} \times \vec{a}) \cdot \vec{b}+\vec{a} \cdot \vec{b} . \tag{10}
\end{align*}
$$

We will use the following two representations of the Dirac matrices. In the chiral representation,

$$
\begin{align*}
\gamma^{0} & =\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \tag{11}\\
\vec{\gamma} & =\left(\begin{array}{cc}
0 & -\vec{\sigma} \\
\vec{\sigma} & 0
\end{array}\right) \tag{12}\\
\gamma^{5}=\gamma_{5} & =i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \tag{13}
\end{align*}
$$

while in the standard, or Dirac representation,

$$
\begin{align*}
\gamma^{0} & =\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \tag{14}\\
\vec{\gamma} & =\left(\begin{array}{cc}
0 & \vec{\sigma} \\
-\vec{\sigma} & 0
\end{array}\right) \tag{15}\\
\gamma^{5}=\gamma_{5} & =i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \tag{16}
\end{align*}
$$

In all representations, these matrices satisfy

$$
\begin{align*}
\left\{\gamma^{\mu}, \gamma^{\nu}\right\} & =\gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}=2 g^{\mu \nu} \tag{17}\\
\gamma^{\mu \dagger} & =\gamma^{0} \gamma^{\mu} \gamma^{0} \tag{18}\\
\gamma_{5}^{\dagger} & =\gamma_{5} \tag{19}\\
\gamma_{5}^{2} & =1 \tag{20}\\
\left\{\gamma_{5}, \gamma^{\mu}\right\} & =0 \tag{21}
\end{align*}
$$

The tensor $\sigma^{\mu \nu}$ is defined thus:

$$
\begin{equation*}
\sigma^{\mu \nu}=\frac{i}{2}\left[\gamma^{\mu}, \gamma^{\nu}\right]=\frac{i}{2}\left(\gamma^{\mu} \gamma^{\nu}-\gamma^{\nu} \gamma^{\mu}\right) \tag{22}
\end{equation*}
$$

and the matrix $\vec{\Sigma}$ is defined

$$
\begin{equation*}
\vec{\Sigma}=\gamma_{5} \gamma^{0} \vec{\gamma} \tag{23}
\end{equation*}
$$

or

$$
\begin{equation*}
\Sigma^{i}=\frac{1}{2} \epsilon_{i j k} \sigma^{j k} \tag{24}
\end{equation*}
$$

which can be expressed

$$
\vec{\Sigma}=\left(\begin{array}{cc}
\vec{\sigma} & 0 \tag{25}\\
0 & \vec{\sigma}
\end{array}\right)
$$

in both the chiral and the standard representations.

