
Physics 564 - Fall 2005, Assignment #3

1a. The Dirac equation, (iγµ∂µ − m)ψ = 0 can describe the motion of an electron in the
presence of an electromagnetic field with the substitution ∂µ → ∂µ − ieAµ where e is the magnitude

of the electron charge. That is, an electron will have charge Qe− = −e and a positron will have
charge Qe+ = +e. If ψ(x) is written ψ(x) = u(p)e−ip·x, where u(p) is expressed in terms of the two
components

u(p) =

(

uA(p)
uB(p)

)

, (1)

where uA and uB are 1×2 column vectors, show that they satisfy the coupled system of equations:

(E −m+ eA0)uA − ~σ · (~p+ e ~A)uB = 0 (2)

~σ · (~p+ e ~A)uA − (E +m+ eA0)uB = 0 (3)

.
1b. For a non-relativistic electron, write E = m+ENR where ENR is the non-relativistic kinetic

energy, and use the fact that ENR � m and eA0 � m to derive an equation for uA alone.
1c. Use the identities

(~σ · ~a)(~σ ·~b) = i(~σ × ~a) ·~b+ ~a ·~b = i~σ · (~a×~b) + ~a ·~b (4)

~p× ~A = −i∇× ~A− ~A× ~p (5)

~B = ∇× ~A (6)

to show that




|~p+ e ~A|2
2m

+
e~σ · ~B
2m

− eA0



 uA = ENRuA (7)

1d. If the mangetic field, ~B, is in the +z direction, explain which spin states uA = χ(s)

correspond to, where

χ(1) =

(

1
0

)

(8)

χ(2) =

(

0
1

)

. (9)

1e. The coupled equations (2,3) describe a non-relativistic positron with the substitutions
E → −m−ENR, ~p→ −~p. Repeat the above steps to show that a non-relativistic positron satisfies
the equation:





|~p− e ~A|2
2m

− e~σ · ~B
2m

+ eA0



 uB = ENRuB (10)

.
1f. If the mangetic field, ~B, is in the +z direction, explain which spin states the solutions

uB = χ(s) correspond to for a non-relativistic positron.



The previous exercise demonstrated that in the non-relativistic limit, the basis χ(s) was useful
for describing the spin states that were quantized along the z-axis. In general, however, this is
not always the most useful direction for describing the spin states of electrons and positrons. If
n̂ = (sin θ cosφ, sin θ sinφ, cos θ) is a unit vector, the operator that rotates the 2-component spinor
χ(s) into one in which the spin is aligned along the n̂ direction can be written

R(θ, φ) =

(

e−iφ/2 cos θ/2 −e−iφ/2 sin θ/2
eiφ/2 sin θ/2 eiφ/2 cos θ/2

)

. (11)

2a. Show that the 2-component spinors ξ(s)(n̂) = R(θ, φ)χ(s) are eigenvectors of the operator
~σ · n̂ = R(θ, φ)σ3R

†(θ, φ).
2b. When n̂ is in the direction of the momentum, that is, n̂ = p̂ = ~p/|~p|, show that the Dirac

spinors

u(s)(p) =

( √
E +mξ(s)(p̂)

σ̂·~p√
E+m

ξ(s)(p̂)

)

v(s)(p) =

(

σ̂·~p√
E+m

ξ(s)(p̂)√
E +mξ(s)(p̂)

)

(12)

are eigenvectors of the operator ~Σ · p̂, where

~Σ =

(

~σ 0
0 ~σ

)

. (13)

Which eigenvalues correspond to electron and positron states with spins aligned parallel or anti-
parallel to ~p?

3a. Show that at high energies, γ5u(s)(p) ≈ ~Σ · p̂u(s)(p).
3b. Particles with their spin aligned parallel to their momentum are called right-handed,

while those with their spins aligned anti-parallel to their momentum are called left-handed. Thus,
uR = u(1)(p) and uL = u(2)(p) describe right- and left-handed electrons, while vR = v(2)(p) and
vL = v(1)(p) describe right- and left-handed positrons. Show that the projection operator 1

2
(1+ γ5)

projects out right-handed electron and left-handed positron states, while 1
2
(1 − γ5) projects out

left-handed electron and right-handed positron states.



The Feynman rules for a massive vector particle decaying to two fermions are indicated below:

γµ
V

gε (P)

v

u(p )

(p )

1

2

µ i

Where gV is a phenomenological coupling constant.
4a. Show that

Γ(V → ff) =
g2

V

4π

|~pf |
M

(M2 + 8/3m2
f ) (14)

where M is the mass of the vector particle and mf is the fermion mass. To average over the initial
polarization of the meson, use the relation

∑

spin

ε∗µ(P )εν(P ) = −gµν +
PµPν

M2
(15)

.
4b. The ψ(2S) meson can decay to e+e−, µ+µ− and τ+τ−. Assuming that the coupling constant

gV does not depend on the type of fermion involved, calculate the ratios of partial widths, Γµµ/Γee

and Γττ/Γee and compare them with the experimental measurements listed in the Particle Data
Book.


