Physics 564 - Fall 2005, Assignment #3

1a. The Dirac equation, $(i\gamma^{\mu}\partial_{\mu} - m)\psi = 0$ can describe the motion of an electron in the presence of an electromagnetic field with the substitution $\partial_{\mu} \rightarrow \partial_{\mu} - ieA_{\mu}$ where *e* is the *magnitude* of the electron charge. That is, an electron will have charge $Q_{e^-} = -e$ and a positron will have charge $Q_{e^+} = +e$. If $\psi(x)$ is written $\psi(x) = u(p)e^{-ip\cdot x}$, where u(p) is expressed in terms of the two components

$$u(p) = \begin{pmatrix} u_A(p) \\ u_B(p) \end{pmatrix},\tag{1}$$

where u_A and u_B are 1×2 column vectors, show that they satisfy the coupled system of equations:

$$(E - m + eA^0)u_A - \vec{\sigma} \cdot (\vec{p} + e\vec{A})u_B = 0$$
⁽²⁾

$$\vec{\sigma} \cdot (\vec{p} + e\vec{A})u_A - (E + m + eA^0)u_B = 0$$
 (3)

1b. For a non-relativistic electron, write $E = m + E_{\text{NR}}$ where E_{NR} is the non-relativistic kinetic energy, and use the fact that $E_{\text{NR}} \ll m$ and $eA^0 \ll m$ to derive an equation for u_A alone.

1c. Use the identities

$$(\vec{\sigma} \cdot \vec{a})(\vec{\sigma} \cdot \vec{b}) = i(\vec{\sigma} \times \vec{a}) \cdot \vec{b} + \vec{a} \cdot \vec{b} = i\vec{\sigma} \cdot (\vec{a} \times \vec{b}) + \vec{a} \cdot \vec{b}$$
(4)

$$\vec{p} \times \vec{A} = -i\nabla \times \vec{A} - \vec{A} \times \vec{p} \tag{5}$$

$$\vec{B} = \nabla \times \vec{A} \tag{6}$$

to show that

$$\left(\frac{|\vec{p} + e\vec{A}|^2}{2m} + \frac{e\vec{\sigma} \cdot \vec{B}}{2m} - eA^0\right)u_A = E_{\rm NR}u_A \tag{7}$$

1d. If the mangetic field, \vec{B} , is in the +z direction, explain which spin states $u_A = \chi^{(s)}$ correspond to, where

$$\chi^{(1)} = \begin{pmatrix} 1\\ 0 \end{pmatrix} \tag{8}$$

$$\chi^{(2)} = \begin{pmatrix} 0\\1 \end{pmatrix}. \tag{9}$$

1e. The coupled equations (2,3) describe a non-relativistic positron with the substitutions $E \rightarrow -m - E_{\text{NR}}, \vec{p} \rightarrow -\vec{p}$. Repeat the above steps to show that a non-relativistic positron satisfies the equation:

$$\left(\frac{|\vec{p} - e\vec{A}|^2}{2m} - \frac{e\vec{\sigma} \cdot \vec{B}}{2m} + eA^0\right)u_B = E_{\rm NR}u_B \tag{10}$$

1f. If the mangetic field, \vec{B} , is in the +z direction, explain which spin states the solutions $u_B = \chi^{(s)}$ correspond to for a non-relativistic positron.

The previous exercise demonstrated that in the non-relativistic limit, the basis $\chi^{(s)}$ was useful for describing the spin states that were quantized along the z-axis. In general, however, this is not always the most useful direction for describing the spin states of electrons and positrons. If $\hat{n} = (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$ is a unit vector, the operator that rotates the 2-component spinor $\chi^{(s)}$ into one in which the spin is aligned along the \hat{n} direction can be written

$$R(\theta,\phi) = \begin{pmatrix} e^{-i\phi/2}\cos\theta/2 & -e^{-i\phi/2}\sin\theta/2\\ e^{i\phi/2}\sin\theta/2 & e^{i\phi/2}\cos\theta/2 \end{pmatrix}.$$
(11)

2a. Show that the 2-component spinors $\xi^{(s)}(\hat{n}) = R(\theta, \phi)\chi^{(s)}$ are eigenvectors of the operator $\vec{\sigma} \cdot \hat{n} = R(\theta, \phi)\sigma_3 R^{\dagger}(\theta, \phi)$.

2b. When \hat{n} is in the direction of the momentum, that is, $\hat{n} = \hat{p} = \vec{p}/|\vec{p}|$, show that the Dirac spinors

$$u^{(s)}(p) = \begin{pmatrix} \sqrt{E+m}\xi^{(s)}(\hat{p}) \\ \frac{\hat{\sigma}\cdot\vec{p}}{\sqrt{E+m}}\xi^{(s)}(\hat{p}) \end{pmatrix} \qquad v^{(s)}(p) = \begin{pmatrix} \frac{\hat{\sigma}\cdot\vec{p}}{\sqrt{E+m}}\xi^{(s)}(\hat{p}) \\ \sqrt{E+m}\xi^{(s)}(\hat{p}) \end{pmatrix}$$
(12)

are eigenvectors of the operator $\vec{\Sigma} \cdot \hat{p}$, where

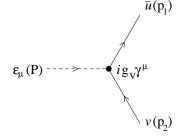
$$\vec{\Sigma} = \begin{pmatrix} \vec{\sigma} & 0\\ 0 & \vec{\sigma} \end{pmatrix}.$$
(13)

Which eigenvalues correspond to electron and positron states with spins aligned parallel or antiparallel to \vec{p} ?

3a. Show that at high energies, $\gamma^5 u^{(s)}(p) \approx \vec{\Sigma} \cdot \hat{p} u^{(s)}(p)$.

3b. Particles with their spin aligned parallel to their momentum are called right-handed, while those with their spins aligned anti-parallel to their momentum are called left-handed. Thus, $u_R = u^{(1)}(p)$ and $u_L = u^{(2)}(p)$ describe right- and left-handed electrons, while $v_R = v^{(2)}(p)$ and $v_L = v^{(1)}(p)$ describe right- and left-handed positrons. Show that the projection operator $\frac{1}{2}(1 + \gamma^5)$ projects out right-handed electron and left-handed positron states, while $\frac{1}{2}(1 - \gamma^5)$ projects out left-handed positron states.

The Feynman rules for a massive vector particle decaying to two fermions are indicated below:



Where g_V is a phenomenological coupling constant.

4a. Show that

$$\Gamma(V \to f\overline{f}) = \frac{g_V^2}{4\pi} \frac{|\vec{p}_f|}{M} (M^2 + 8/3m_f^2)$$
(14)

where M is the mass of the vector particle and m_f is the fermion mass. To average over the initial polarization of the meson, use the relation

$$\sum_{\text{spin}} \epsilon^*_{\mu}(P) \epsilon_{\nu}(P) = -g_{\mu\nu} + \frac{P_{\mu}P_{\nu}}{M^2}$$
(15)

4b. The $\psi(2S)$ meson can decay to e^+e^- , $\mu^+\mu^-$ and $\tau^+\tau^-$. Assuming that the coupling constant g_V does not depend on the type of fermion involved, calculate the ratios of partial widths, $\Gamma_{\mu\mu}/\Gamma_{ee}$ and $\Gamma_{\tau\tau}/\Gamma_{ee}$ and compare them with the experimental measurements listed in the Particle Data Book.