# Solar Neutrinos

By Wendi Wampler

### What are Neutrinos?

- Neutrinos are chargeless, nearly massless particles
- Most abundant particle in the Universe
- Interact with matter via weak nuclear force
  - Nearly transparent to matter
- Only known type of particle that can escape from the sun's core without interacting
- Hypothesized in 1930
  - Beta decay

$$n \rightarrow p + e + energy$$

### How are neutrinos made?

 The sun, and all other stars, shine due to nuclear fusion reactions happening at the core



## First experiment

- Raymond Davis Jr., Homestake Mine in SD, 1964
- Based on reverse beta decay of chlorine atoms  $\upsilon + {}^{37}Cl \rightarrow {}^{37}Ar + e^{-}$
- 470 metric tons of perchloroethylene solution ~10<sup>30</sup> atoms Cl
- Saw atom decays once every few days
  - About half of what the solar model predicted
- CI has too high of an energy threshold for neutrinos in sun's primary proton-proton reactions
  - Detects only neutrinos with higher energy; those from Be and B decays

## **SNO** experiment

- Sudbury Neutrino Observatory
- Detects all three types of neutrinos using heavy water (D<sub>2</sub>0)
  - can separately observe electron neutrinos and all types of neutrinos
  - Measures flux, energy, and direction of electron neutrinos produced by sun
  - From flux and shape of the energy spectrums they can determine how strongly the flavours mix



# Neutrino Interactions in D<sub>2</sub>0

### Charged current reaction

- When electron neutrino approaches deuterium, W is exchanged
- electron is ejected at the speed of light (which is faster than the speed of light in water)
  - Gives off shockwave of light called Cherenkov Radiation
  - Detected by photomultiplier tubes (PMT)
    - Patterns can be related to energies of the neutrinos and their angular distribution
- Standard solar model predicts ~ 30 charged current events/day





# Neutrino Interactions in D<sub>2</sub>O

### Neutral Current Reaction

- Z boson is exchanged
  - When neutron captured by another nucleus, gamma rays are emitted and can be detected
- Equally sensitive to all types of neutrinos
  - 3-He proportional counters hung in grid within D<sub>2</sub>O
  - 35-CI can be added to NaCI
    - High absorption cross-section for thermo neutrons
- Standard solar model predicts ~30 neutral current events/day

### $\upsilon + d \rightarrow \upsilon + p + n$



# Neutrino Interactions in D<sub>2</sub>O

#### Electron Scattering

### $e^- + \upsilon \rightarrow e^- + \upsilon$

- Not unique to heavy water
- Sensitive to all neutrinos, but electron neutrinos are more likely by a factor of 6
- Little spectral information gained
- Good directional information
- Standard solar model predicts ~ 3 events/day



## **Results of SNO Experiments**

- Problem Flux of electron neutrinos is still too low
  - Total flux of neutrinos agrees with standard solar model
- Solutions
  - Solar solution problem with solar model
    - Much investigation has found that our current model is very accurate
  - Neutrino solution problem with our theory of neutrinos

Total Rates: Standard Model vs. Experiment Bahcall-Serenelli 2005 [BS05(0P)] 8.1<u>\*12</u> 26\*9  $1.0^{+0.1}_{-0.1}$  $1.0^{+0.16}_{-0.16}$ 1.0+0.16 0.88±0.06 0.48±0.07 69±5  $67 \pm 5$  $0.41 \pm 0.01$  $2.56 \pm 0.23$  $0.30 \pm 0.02$ GALLEX SAGE + SNO V SNO 680 All v H\_O Kaniokande D.0 D.,O C1GaExperiments Theory Uncertainties 🖾

### **Neutrino Solutions**

- There were three solutions considered:
  - 1. Irregular neutrino emission spectra or other beta decay oddities
  - 2. Neutrino oscillations
  - 3. Irregular neutrino interactions with detectors
  - 1 and 3 have been tested extensively in labs
  - 2 involves neutrino travel across astronomical distances
    - Supported by reports that anomalies occur during travel of terrestrial distances

## **Neutrino Oscillations**

- Superposition a mixture of states
  - Behave as the K<sup>0</sup> meson produced in a weak-interaction eigenstate (flavor), but travel in a mass eigenstate
  - interact with our detectors as a mixture of two or more flavors
- Good data fit:
  - 100% electron-neutrino leaves sun, and ends up a mix of ~ 40% electron-neutrino and ~60% some other neutrinos
- Neutrinos occupy corresponding place in lepton families as to K<sup>0</sup> and B<sup>0</sup> constituent quarks in quark families
- Process can only occur if neutrinos have mass

| Neutrinos in<br>Standard model | Mass      |
|--------------------------------|-----------|
| Electron<br>neutrino           | < 2.5 eV  |
| Electron<br>antineutrino       | < 2.5 eV  |
| Muon neutrino                  | < 170 keV |
| Muon<br>antineutrino           | < 170 keV |
| Tau neutrino                   | < 18 MeV  |
| Tau antineutrino               | < 18 MeV  |

# Questions?

### Sources

- SNO homepage <a href="http://www.sno.phy.queensu.ca/">http://www.sno.phy.queensu.ca/</a>
- Talk Origins <u>http://www.talkorigins.org/faqs/faq-</u> solar.html
- John Bahcall homepage <u>http://www.sns.ias.edu/~jnb/</u>
- Bahcall, John. "How Uncertain are Solar Neutrino Predictions?" <u>Physics Letters B</u>. vol. 443 p. 1, 1998.
- Bahcall, John. "Where do we stand with solar neutrino oscillations?" <u>Physical Review D</u>. vol. 58, 1998

This document was created with Win2PDF available at <a href="http://www.daneprairie.com">http://www.daneprairie.com</a>. The unregistered version of Win2PDF is for evaluation or non-commercial use only.