Physics 564 – Particle Physics

Matthew Jones - Phys 378

- Office hours: after class or by appointment
- Web page:

http://www.physics.purdue.edu/~mjones/phys564

Should contain:

- Course outline, nominal schedule
- Lecture notes
- Assignments
- Supplementary material (long derivations)
- Computing instructions and examples

Other information

- Particle Data Group: http://pdg.lbl.gov
 - order your free copy today.
- Text: Halzen & Martin
 - Provides most of the theoretical background
 - Not out of date, but by now it is incomplete
- Other texts:
 - Perkins, Griffiths, Aitchison & Hey, Leader & Predazzi, Bjorken & Drell, de Wit & Smith, …
- Historical development:
 - The Rise of the Standard Model, Hoddeson, et al. (ed.)
 - Constructing Quarks, Pickering

Other information

- Grading: 70% assignments, 30% final project
- Assignments:
 - Plan for about 6 assignments
 - Some computing component to assignments
 - Free to use any platform/software you want
 - Examples using <u>ROOT</u> will be provided on web the page
 - Everyone should have an account with PCN
 - First exercise will be to make sure that this really works as advertised

Relation to other subjects

- Quantum Field Theory, String Theory
 - eg. Quantum Field Theory, Ryder, Itzekson & Zuber
- Detector Instrumentation
 - eg. Introduction to Experimental Particle Physics, Fernow
- Accelerator Physics
 - eg. An Introduction to Particle Accelerators, Wilson
- Nuclear Physics
 - eg. Introductory Nuclear Physics, Krane
- Astrophysics, Cosmology
- Course dedicated to Standard Model and its extensions, *eg.* Phys 565.

Pre-Modern Particle Physics

- Particle concept is not new:
 - Central forces, action at a distance (Newton)
 - Kinetic theory of gases (Bernoulli, 1738)
 - Boscovich: gasses composed of massive, point like particles with central forces
 - No quantum mechanics but otherwise similar to the way we think of particle physics
 - Forces turn out to be a consequence of the exchange of "virtual quanta"

"Modern" Physics

The first particle accelerator?

"Modern" Physics

- X-rays (Roentgen, 1895)
- Electron (Thompson, 1897) measured Q/m
- Radioactivity (Becquerel, 1900)
- Atomic model (Rutherford, 1911)
- Cosmic Rays (Hess, 1912)
- Proton (1919)
- Neutron (1931)

Quantum Mechanics

- Particle nature of x-rays (Compton, 1924)
- Wave nature of matter (de Brogle, 1925)
- Wave mechanics (Schrodenger, 1926)
- Relativistic Quantum Mechanics (Dirac, 1928)
- Particle accelerators:
 - Particles emitted in nuclear decays
 - Cosmic rays (Hess, 1912)
 - Ray transformer (Wideroe, 1928)
 - Electrostatic (Cockcroft Walton, 1932-34)
 - Cyclotron (Lawrence, 1930)
 - Betatrons, synchrotrons (1940's)

Victor Hess before his 1912 balloon flight in Austria, during which he discovered cosmic rays

Particle Detectors

- Charged particles will ionize the material through which they move.
- The ions produce chemical or physical changes in the material.
 - Photographic emulsion
 - Cloud chamber
 - Bubble chamber
 - Spark chamber
 - Modern electronic tracking detectors

Particle Detectors

• Emulsion:

Incident cosmic ray

Target nucleus

Lots of particles (mostly pions)

Cloud Chamber:

Particle Detectors

- Bubble Chambers
 - Used in *fixed target* experiments at particle accelerators
 - The detector material is the target
 - Filled with liquid H_2 , D_2 , freon, *etc...*
 - Pressure keeps it in a liquid state
 - Charged particles ionize it
 - Sudden reduction in pressure produces bubbles along the ionized paths

Bubble Chambers

Modern Particle Detectors

- Still only detect charged particles
- Indirectly sensitive to neutral particles: $- \text{ eg. } \gamma \rightarrow \text{ e}^+\text{ e}^-, \text{ np } \rightarrow \text{ pp}\pi^-$
- Can be triggered:
 - Electronic signals recorded only when something "interesting" happens
- Data written to mass storage medium
- Analyzed "offline"

Modern Particle Detectors

• ALEPH detector:

The ALEPH Detector

Modern Particle Detectors

• ALEPH detector:

Other Particle Detectors

SNO

Sudbury Neutrino Observatory

Located in Ontario, Canada 2039 m underground 10¹¹ m to Sun

9500 photomultiplier tubes

Acrylic vessel containing 1000 tonnes of heavy water

7000 tonnes of ultra-pure light water for shielding and support

Particles

Particle Physics

- What are their properties?
 - Mass and charge
 - Spin and magnetic moment
 - Internal quantum numbers: C, P, "Isospin"
 - Lifetime
 - Branching fractions
- The <u>Particle Data Group</u> compiles the Review of Particle Properties...

Example:

BOTTOM, CHARMED MESONS $(B = C = \pm 1)$

 $B_c^+ = c\overline{b}, B_c^- = \overline{c}b, \text{ similarly for } B_c^*$'s

B^{\pm}_{ϵ}

 $I(J^P) = 0(0^-)$ I, J, P need confirmation.

Quantum numbers shown are quark-model predicitions.

Mass $m = 6.4 \pm 0.4$ GeV Mean life $\tau = (0.46^{+0.18}_{-0.16}) \times 10^{-12}$ s

 B_c^- modes are charge conjugates of the modes below.

 $B_{c}^{+} \text{ DECAY MODES } \times B(\overline{b} \to B_{c}) \qquad \text{Fraction } (\Gamma_{i}/\Gamma) \qquad \text{Confidence level } (\text{MeV}/c)$

The following quantities are not pure branching ratios; rather the fraction $\Gamma_j/\Gamma \times B(\overline{b} \rightarrow B_c)$.

$J/\psi(1S)\ell^+ u_\ell$ anything	$(5.2^{+2.4}_{-2.1}) \times 10^{-5}$			_
$J/\psi(1S)\pi^+$	< 8.2	$\times 10^{-5}$	90%	2448
$J/\psi(1S)\pi^+\pi^+\pi^-$	< 5.7	$\times 10^{-4}$	90%	2429
$J/\psi(1S)a_1(1260)$	< 1.2	$\times 10^{-3}$	90%	2255
$D^{*}(2010)^{+}\overline{D}{}^{0}$	< 6.2	$\times 10^{-3}$	90%	2546

Phenomenology

- Which particles are truly elementary?
- Do we understand why particles have their observed properties?
- What can we calculate?
- Are the calculations reliable?
- Can we compare them with experiment?
- Is there an underlying theory that explains everything?

Phenomenology

- Particles that don't interact are described by quantum mechanics and special relativity
- Interactions are described by
 - Empirical parameterizations
 - Dynamical models

Particle Interactions (Forces)

- Particles interact by the exchange of virtual quanta
- Only know of four forces:
- Electromagnetism
 Weak nuclear force
 "Electroweak"
- Strong nuclear force
- Gravity
- Each is associated with a class of particles
 - -eg. Electromagnetism \rightarrow photon

Particle Interactions

 If we know how a particle couples to a particular force carrier then we can calculate probabilities:

$$\mathcal{P}(\nu n \to \mu p) \sim |\langle \mu p | H | \nu n \rangle|^2$$

- What is harder is doing the reverse...
 - Measure probabilities
 - Deduce the form of the Hamiltonian, H
- That is essentially what Particle Physics is about.

Unanswered Questions

- What are the most fundamental types of matter?
- Are there only four forces?
- Is the model that describes them self-consistent?
- Why does nature look this way?
- Are there cosmological implications?
- We think we might get some answers in the next decade...

This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.