

Physics 42200

Waves & Oscillations

Lecture 5 – French, Chapter 3

Spring 2016 Semester

Matthew Jones

Mechanics Lesson: Circular Motion

• Linear motion:

- Mass: *m*
- Position: x(t)
- Velocity: $v = \dot{x} = dx/dt$
- Momentum: $p = m \dot{x}$
- Acceleration: $a = \ddot{x} = d^2x/dt^2$
- Force: $F = m \ddot{x}$
- Kinetic energy: $T = \frac{1}{2}m\dot{x}^2$

Mechanics Lesson: Circular Motion

• Circular motion:

- Moment of inertia: $I = mr^2$
- Angle: $\theta(t)$, arc length: $s(t) = r \theta(t)$
- Angular velocity: $\omega=\dot{\theta}$, linear velocity: $v=r~\dot{\theta}$
- Angular momentum: $L=I~\dot{\theta}$
- Angular acceleration: $\alpha = \ddot{\theta}$
- Torque (or "moment"): N=r F=I $\ddot{\theta}$
- Kinetic energy: $T=\frac{1}{2}m\dot{s}^2=\frac{1}{2}mr^2\dot{\theta}^2=\frac{1}{2}I~\dot{\theta}^2$

(in 3 dimensions, $\vec{\omega}$, $\vec{\alpha}$, \vec{L} , \vec{N} are vectors...)

Free Vibrations of Physical Systems

- Mass + spring system: $m\ddot{x} kx = 0$
- Stretched elastic material: $m\ddot{x} \frac{YA}{L}x = 0$
- Floating objects: $m\ddot{x} \rho gAx = 0$
- Twisted elastic material: $I\ddot{\theta} \frac{\pi n R^4}{2\ell} \theta = 0$
- What should you have learned from the last lecture?
 - ➤ A bunch of formulas?
 - > Fundamental physical laws?

Stretched Elastic Material

- Physical concepts:
 - Stuff stretches when you pull on it
 - If it is longer to begin with, it will stretch more, when subjected to the same force
 - Definition: $strain \equiv \Delta l_0/l_0$
 - But it won't stretch as much if it is thicker
 - Definition: stress = F/A
 - − Assertion: $strain \propto stress$
 - Limits of applicability? When strain is $\sim few~\%$ $F = \frac{YA}{l_0} x$

$$F = \frac{YA}{l_0}x$$

• This defines the constant of proportionality, Y.

Floating Objects

- Archimedes' principle: buoyant force is equal to the weight of displaced liquid.
- Static equilibrium:

$$\rho g \left(V_0 \right) + \left(\pi h \left(\frac{d}{2} \right)^2 \right) = mg$$

- This expression is not worth memorizing...
- But you should understand what the pieces mean.
- The details are only specific to this problem

Twisted Elastic Material

- Physical concept:
 - Shear modulus...

$$\frac{F}{A} = n\alpha$$

– Applied to a specific geometry:

$$M = \frac{\pi n R^4 \theta}{2l}$$

 Again, the formula is specific to one specific geometry. If the object were rectangular, instead of round, the formula would be different.

More general advice

- Study the examples...
 - Which physical principles are being used?
 - Do you agree with the translation from the physical concepts into algebraic relations?
 - Did the solution require looking at the problem in a different way?
 - Do you understand the geometry?
 - Do you understand the algebra?
 - Could you use the same ideas and techniques to analyze a similar problem?

Almost Linear Systems

• Consider a simple pendulum:

Physical concepts:

- torque produces an angular acceleration.
- definition of torque:

$$\vec{N} = \vec{\ell} \times \vec{F}$$

$$N = -\ell F \sin \theta$$

• angular acceleration:

$$N = I\ddot{\theta}$$

 $\vec{F} = m\vec{g}$ moment of inertia:

$$I = m\ell^2$$

Almost Linear Systems

 $N = I\ddot{\theta}$ $N = -\ell mg \sin \theta$ $I = m\ell^2$

Equation of motion:

$$m\ell^{2}\ddot{\theta} = -mg\ell\sin\theta$$
$$\ddot{\theta} + \frac{g}{\ell}\sin\theta = 0$$

$$\ddot{\theta} + \omega^2 \sin \theta = 0$$

But this is not of the form $\ddot{\theta} + \omega^2 \theta = 0$

Almost Linear Systems

$$\ddot{\theta} + \omega^2 \sin \theta = 0$$

- The solution is *not* $\theta(t) = A\cos(\omega t + \varphi)$ but it is close...
- Recall that one way to write $\sin \theta$ is as a power series in θ :

$$\sin \theta = \theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \frac{\theta^7}{7!} + \cdots$$

- When $\theta \ll 1$, $\sin \theta \approx \theta$
- How good is this approximation?
- Suppose we want it to be within 1% $\sin(0.3925) 0.3925 = -0.0100005 \dots$
- In degrees, $22.49^{\circ} = 0.3925$ radians

Almost Linear Systems

• Provided θ is sufficiently small (ie, $\theta < 22^{\circ}$),

$$\ddot{\theta} + \omega^2 \theta \approx \ddot{\theta} + \omega^2 \sin \theta = 0$$

• The solution is approximately

$$\theta(t) = A\cos(\omega t + \varphi)$$

• The frequency is approximately

$$f = \frac{1}{2\pi} \sqrt{\frac{g}{\ell}}$$

• The approximation is better when A is even smaller

Potential Energy Functions

• Same system analyzed using energy:

Kinetic energy:

$$T = \frac{1}{2}I\dot{\theta}^2$$

Potential energy:

$$V = mgh = mg\ell(1 - \cos\theta)$$

Total energy:

$$E = T + V = const.$$

Does this resemble the mass+spring problem? $\frac{1}{2}m\dot{x}^2 + \frac{1}{2}kx^2 = E$

$$\frac{1}{2}m\dot{x}^2 + \frac{1}{2}kx^2 = E$$

Potential Energy Functions

• Recall that one way to write
$$\cos\theta$$
 is as a power series in θ :
$$\cos\theta = 1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \frac{\theta^6}{6!} + \cdots$$

• Energy for a simple pendulum:

$$E = T + V = \frac{1}{2}I\dot{\theta}^2 + mg\ell(1 - \cos\theta)$$

$$T + V \approx \frac{1}{2}I\dot{\theta}^2 + mg\ell\left(1 - \left(1 - \frac{\theta^2}{2!}\right)\right)$$

$$E = \frac{1}{2}I\theta^2 + \frac{1}{2}mg\ell\theta^2$$

- Now, this is in the same form as for the mass + spring system.
- Interpretation?

Phase Diagram Almost elliptical when E is small. $E = \frac{1}{2}I\theta^2 + \frac{1}{2}mg\ell\theta^2 = const$ Not a good approximation when E is large. Not even periodic!

Physical Pendulum

No new physical concepts – just a different geometry.

$$N = I\ddot{\theta}$$

Gravitational force acts through the center of gravity:

$$N = -Mgx \sin \theta$$

What is the moment of inertia? Recall that

$$I \equiv \sum_i m_i (r_i)^2 \ \text{ or } \ I \equiv \int r^2 \, dm$$

Moment of Inertia of a Stick

• Set up the integral:

$$I = \frac{M}{L} \int_{0}^{L} (y + x - L/2)^{2} dy$$
Let $u = y + x - \frac{L}{2}$
Then $du = dy$

$$I = \frac{M}{L} \int_{x-L/2}^{x+L/2} u^{2} du = \frac{M}{3L} u^{3} \Big|_{x-L/2}^{x+L/2}$$

Moment of Inertia of a Stick

$$I = \frac{M}{3L} [(x + L/2)^3 - (x - L/2)^3]$$
$$= \frac{M}{3L} [3x^2L + L^3/4]$$
$$= M \left[x^2 + \frac{L^2}{12} \right]$$

Check the limiting cases:

$$x = 0 \rightarrow I = \frac{ML^2}{12}$$
 $x = \frac{L}{2} \rightarrow I = \frac{ML^2}{3}$

$$x = \frac{L}{2} \rightarrow I = \frac{ML}{3}$$

Moment of Inertia of a Stick

Physical Pendulum

• Equation of motion:

$$I\ddot{\theta} + Mgx \sin \theta = 0$$
$$\ddot{\theta} + \omega^2 \theta \approx 0$$

where
$$\omega = \sqrt{\frac{Mgx}{I}} = \sqrt{\frac{gx}{x^2 + \frac{L^2}{12}}}$$

• When x = L/2 (suspended from one end)

$$\omega = \sqrt{\frac{3g}{2\ell}}$$

(same frequency as a simple pendulum with 2/3 the length)

One More Physical Pendulum

• The "ring pendulum":

You should recognize that the problem is the same as in the case of the stick. The only difference is the moment of inertia.