

Physics 42200

Waves & Oscillations

Lecture 4 – French, Chapter 3

Spring 2016 Semester Matthew Jones

Energy Considerations

• The force in Hooke's law is

$$F(x) = -kx$$

• Potential energy can be used to describe conservative forces:

$$\vec{F} = -\nabla V(\vec{x})$$

$$F = -\frac{dV}{dx}$$

- The force vanishes when dV/dx = 0
- Local minimum when

$$\frac{d^2V}{dv^2} > 0$$

Energy Considerations

- The system will oscillate about a stable equilibrium point.
- $\bullet \;\;$ If the minimum is parabolic, then the spring constant is

$$k = \frac{d^2V}{dx^2}$$

 $k = \frac{d^2V}{dx^2}$ • Potential energy function for a spring:

$$V(x) = \frac{1}{2}k \ x^2$$

Energy Considerations

• Kinetic energy:

$$T = \frac{1}{2}m\,\dot{x}^2$$

• Total energy:

$$E = T + V = \frac{1}{2}m \dot{x}^2 + \frac{1}{2}k x^2$$

• Total energy is conserved:

$$\frac{dE}{dt} = 0$$

Simple Harmonic Motion

• Start from Newton's second law: $m\ddot{x} + kx = 0$

$$m\ddot{x} + kx = 0$$

• Multiply by \dot{x} :

$$m\dot{x}\ddot{x} + k\dot{x}x = 0$$

Notice that

$$\frac{d}{dt}\dot{x}^2 = 2\dot{x}\ddot{x}$$

· So we can write

$$\frac{d}{dt}\left(\frac{1}{2}m\dot{x}^2 + \frac{1}{2}kx^2\right) = 0$$

Which implies that

$$\frac{1}{2}m\dot{x}^2 + \frac{1}{2}kx^2 = E = const.$$

Simple Harmonic Motion

$$x(t) = A \cos(\omega t + \varphi)$$

$$\dot{x}(t) = -A \omega \sin(\omega t + \varphi)$$

• Energy conservation: $\frac{1}{2}m\dot{x}^2 + \frac{1}{2}kx^2 = E$

• The energy conservation relation can tell us a lot about the motion even when we can't solve for x(t).

Phase Diagrams

- Phase diagrams are useful for describing the motion even when we can't solve for x(t) exactly.
- Example:

- But for small oscillations the phase diagram will resemble
- Study Assignment #2 from 2014 for an example.

A More Realistic Model

- So far we considered a mass attached to a spring.
- The spring was assumed to be massless.
- What if the spring has a finite mass *M*?

Physical Spring

• When the mass is in motion, how much kinetic energy does the spring have?

- The spring has a total length x and total mass M
 The velocity of the fixed end of the spring
- is always zero

 3. The velocity of the moving end of the
- spring is given by \dot{x} 4. At a distance s from the fixed end, the

$$v = \frac{s}{r}$$

 $v = \frac{s}{x}\dot{x}$ 5. The mass of an element of length ds will

$$dM = \frac{M}{x}d$$

Physical Spring

• Kinetic energy of one element of the spring:

$$dT = \frac{1}{2}v^2 dM = \frac{1}{2} \left(\frac{s}{x}\dot{x}\right)^2 \frac{M}{x} ds$$

• We get the total kinetic energy by integrating over the length of the spring:

T_{spring} =
$$\frac{M}{2x^3}(\dot{x})^2 \int_0^x s^2 ds = \frac{M}{6x^3}(\dot{x})^2 s^3 \Big|_0^x$$

= $\frac{M}{6}(\dot{x})^2$

• Total kinetic energy is $T = T_{mass} + T_{spring}$

Physical Spring

• Total kinetic energy:
$$T=\frac{1}{2}m(\dot{x})^2+\frac{1}{6}M(\dot{x})^2=\frac{1}{2}\Big(m+\frac{M}{3}\Big)(\dot{x})^2$$
 • Potential energy:

$$V = \frac{1}{2}kx^2$$

• Total energy:

$$E = T + V = \frac{1}{2} \left(m + \frac{M}{2} \right) (\dot{x})^2 + \frac{1}{2} k x^2$$

- $E = T + V = \frac{1}{2} \left(m + \frac{M}{3} \right) (\dot{x})^2 + \frac{1}{2} k x^2$ We know that when $E = \frac{1}{2} m (\dot{x})^2 + \frac{1}{2} k x^2$ the frequency is
- Therefore, the oscillation frequency of the physical spring must be

$$\omega = \sqrt{\frac{k}{m + M/3}}$$

Oscillating Systems: Elastic Bodies

- Rigid bodies are usually elastic although we may not normally notice.
- What characterizes how elastic an object is?

- The extension under the force ΔF is proportional to the original length, $l_{\rm 0}$.
- Constant of proportionality: $strain \equiv \Delta l_0/l_0$

Oscillating Systems: Elastic Bodies

- The same deformation would result if ΔF were increased provided A also increased by the same amount.
- Stress is defined: $stress = \Delta F/A$
- When the strain is small (eg, $\Delta l_0/l_0 < 1\%$), the stress is proportional to the strain:

stress ∝ strain

Oscillating Systems: Elastic Bodies

 $stress \propto strain$

- Constant of proportionality is called Young's modulus $\frac{\Delta F}{A} = Y \frac{\Delta l_0}{l_0}$
- Newton's third law: when the material is stretched by a distance x, the material will exert a reaction force

$$F = -rac{YAx}{l_0} = -kx$$
 where $k = YA/l_0$.

Example

- Steel has $Y = 20 \times 10^{10} \ N/m^2$
- Suppose that $m=1\ kg,\ l_0=2\ m$ and has a diameter of $d=0.5\ mm$ (24 AWG)
- Cross sectional area is

$$A = \pi \left(\frac{d}{2}\right)^2$$

Restoring force:

Restoring force:
$$F = -\frac{YA\Delta l}{l_0} = -\frac{\pi}{4} \frac{Yd^2}{l_0} \Delta l = -k\Delta l$$

$$k = \frac{\pi \cdot (20 \times 10^{10} \text{ N/m}^2) \cdot (0.0005 \text{ m})^2}{4 \cdot (2 \text{ m})}$$

$$= 1.96 \times 10^4 \text{ N/m}$$

Example

• How much will the wire stretch under the weight of the mass, *m*?

$$\Delta l = \frac{mg}{k} = \frac{(1 \, kg) \cdot (9.81 \, N/kg)}{1.96 \times 10^4 \, N/m}$$
$$= 5.00 \times 10^{-4} \, m$$

Example

Newton's second law:

$$m\frac{d^2}{dt^2}\Delta l = -k\Delta l$$

$$\frac{d^2}{dt^2}\Delta l + \frac{k}{m}\Delta l = 0$$

$$\frac{d^2}{dt^2}\Delta l + \omega^2\Delta l = 0$$

- Solutions can be written $\Delta l(t) = A \, \cos(\omega t + \varphi)$
- Oscillation frequency is

$$f = \frac{\omega}{2\pi} = \frac{1}{2\pi} \sqrt{k/m} = \frac{1}{2\pi} \sqrt{\frac{1.96 \times 10^4 \text{ N/m}^2}{1 \text{ kg}}}$$
$$= 22.3 \text{ Hz}$$

Floating Objects

• Hygrometer: measures density of liquids

Archimedes' principle: Buoyant force is equal to the weight of the volume of liquid displaced.

If the stem has a diameter of d then the displaced volume is

$$V = V_0 + \pi h \left(\frac{d}{2}\right)^2$$
$$F_b = \rho g \left(V_0 + \pi h \left(\frac{d}{2}\right)^2\right)$$

Floating Objects

When in static equilibrium,

$$F_b = F_g$$

$$\rho g \left(V_0 + \pi h \left(\frac{d}{2} \right)^2 \right) = mg$$

$$h = \frac{m/\rho - V_0}{\pi d^2 / 4}$$

When the hydrometer is displaced by an additional distance Δh , the net force is

$$F = -\pi \rho g \left(\frac{d}{2}\right)^2 \Delta h$$

Floating Objects

$$\begin{split} m\frac{d^2}{dt^2}\Delta h &= -\pi\rho g \left(\frac{d}{2}\right)^2\Delta h \\ \frac{d^2}{dt^2}\Delta h &+ \omega^2\Delta h = 0 \\ \text{where } \omega &= \frac{d}{2}\sqrt{\frac{\pi\rho g}{m}} \end{split}$$

where
$$\omega = \frac{d}{2} \sqrt{\frac{\pi \rho g}{m}}$$

Shear Forces

• Angle α is proportional to F and inversely proportional to *A*:

$$\frac{F}{A} = n\alpha \approx n \frac{x}{l}$$

- The constant of proportionality is called the *shear* modulus, denoted n.
- For example, steel has $n=8 imes 10^{10} \ N/m^2$

Shear Forces

• Torsion of a thin-walled tube of radius r and length l twisted through an angle θ :

- Angle of deflection: $\frac{x}{l} = \frac{r\theta}{l}$
- Shear force: $\Delta F = \frac{nr\theta \Delta A}{l}$

Shear Forces

• Differential element of torque:

$$\Delta M = r \Delta F$$

- Differential element of area: $\Delta A = r \Delta r \Delta \phi$
- Integrate around the circle...

$$M = \int dM = r \int dF = \frac{nr^2\theta}{l} \int dA = \frac{nr^2\theta}{l} \int_0^{2\pi} (r\Delta r) d\varphi = \frac{2\pi nr^3\Delta r \,\theta}{l}$$

• Total torque on a solid cylinder of radius R: integrate over r from 0 to R.

$$M = \frac{2\pi n\theta}{l} \int_0^R r^3 dr = \frac{\pi n R^4 \theta}{2l}$$

Torsion Pendulum

• Suppose an object with moment of inertia $I=0.00167~kg\cdot m^2$ is suspended from a steel wire of length $\ell=2~m$ with a diameter of d=0.5~mm (24 AWG).

$$I\ddot{\theta} = -\frac{\pi n R^4 \theta}{2\ell}$$
$$\ddot{\theta} + \omega^2 \theta = 0$$

where
$$\omega = \sqrt{\frac{\pi n R^4}{2I\ell}} = \sqrt{\frac{\pi n d^4}{32I\ell}}$$

• Frequency of oscillation:

$$f = \frac{1}{2\pi} \sqrt{\frac{\pi \cdot (8 \times 10^{10} \ N/m^2) \cdot (0.0005 \ m)^4}{32 \cdot (0.00167 \ kg \cdot m^2) \cdot (2 \ m)}} = 0.061 \ Hz$$