

Physics 42200 Waves & Oscillations

Lecture 40 – Review

Spring 2016 Semester

Final Exam

Date: Tuesday, May 3th Time: 7:00 to 9:00 pm Room: Phys 112

You can bring one double-sided pages of notes/formulas.

Bring something to write with.

You shouldn't need a calculator.

Today's Review of Optics

- Polarization
 - Reflection and transmission
 - Linear and circular polarization
 - Stokes parameters/Jones calculus
- Geometric optics
 - Laws of reflection and refraction
 - Spherical mirrors
 - Refraction from one spherical surface
 - Thin lenses
 - Optical systems (multiple thin lenses, apertures, stops)
 - Thick lenses, ray tracing, transfer matrix
 - Aberrations

_		

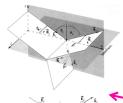
Wednesday's Review of Optics

- Interference
 - Double-slit experiments
 - Fresnel's double-mirror, double-prism, Lloyd's mirror
 - Thin films, Michelson interferometer
 - Multiple beam interferometry, Fabry-Perot interferometer
- Diffraction
 - Fraunhofer diffraction
 - Single-slit, multiple-slit diffraction
 - Diffraction gratings
 - Fresnel diffraction

Polarization

• General representation:

$$\vec{E}(z,t) = \vec{E}_0 \cos(kz - \omega t + \xi)$$


- Light intensity: $\vec{S}=\frac{\vec{E}\times\vec{B}}{\mu_0},\ \ I=\left<\vec{S}\right>=\epsilon_0\ c\langle E^2\rangle=\frac{\epsilon_0c}{2}|E_0|^2$
- Linear polarization:
 - $-\vec{E}_0$ is constant
- · Circular polarization
 - Orthogonal components out of phase by $\xi=\pm \frac{\pi}{2}$

$$\vec{E}(z,t) = E_0(\hat{\imath}\cos(kz - \omega t) \pm \hat{\jmath}\sin(kz - \omega t))$$
• Right circular polarization: +

- Left circular polarization: -
- Degree of polarization: $V=I_p/(I_p+I_n)$ or $V=\frac{I_h-I_p}{I_h+I_p}$

Polarization

• Make sure you understand the following geometry:

 E_{\perp} is the component of \vec{E} that is perpendicular to plane of incidence

 E_{\parallel} is the component of \vec{E} that is parallel to plane of reflection

In this example, \vec{E} only has an E_{\perp} component ($E_{\parallel}=0$) while \vec{B} only has a B_{\parallel} component ($B_{\perp}=0$).

Polarization

• Fresnel equations:

$$\begin{split} \left(\frac{E_r}{E_i}\right)_{\perp} &= -\frac{\sin(\theta_i - \theta_t)}{\sin(\theta_i + \theta_t)} \\ \left(\frac{E_r}{E_i}\right)_{\parallel} &= \frac{\tan(\theta_i - \theta_t)}{\tan(\theta_i + \theta_t)} \end{split}$$

$$\begin{pmatrix} \frac{E_t}{E_i} \end{pmatrix}_{\perp} = \frac{(n_1/n_2) \mathrm{sin}(2\theta_i)}{\mathrm{sin}(\theta_i + \theta_t)} \\ \begin{pmatrix} \frac{E_t}{E_i} \end{pmatrix}_{\parallel} = \frac{2 \, \mathrm{cos}(\theta_i) \, \mathrm{sin}(\theta_t)}{\mathrm{sin}(\theta_i + \theta_t) \, \mathrm{cos}(\theta_i - \theta_t)}$$

• You have to calculate θ_t using Snell's law.

Polarization

- Brewster's angle, θ_B : $\theta_i + \theta_t = 90^\circ$ - $r_\parallel \rightarrow 0$ when $\theta_i \rightarrow \theta_B$ (polarization by reflection)
- When light is at normal incidence,

$$\begin{split} \theta_i &= \theta_t = 0 \text{ and } E_\parallel = 0... \\ r_\perp &= \left(\frac{E_r}{E_i}\right)_\perp = \frac{n_1 - n_2}{n_1 + n_2} \\ t_\perp &= \left(\frac{E_t}{E_i}\right)_\perp = \frac{2n_1}{n_1 + n_2} \end{split}$$

• When $n_1 < n_2$, $r_\perp = -1$ (phase changes by π).

Polarization

- Remember that the reflected and transmitted intensities depend on the square of r and t.
- ullet Also remember that intensity depends on v

$$I = \langle \vec{S} \rangle = \epsilon_0 \ v \langle E^2 \rangle = \frac{\epsilon_0 \dot{c}}{n} \langle E^2 \rangle$$

• Energy conservation:

$$R = \frac{I_r}{I_i} = r^2 \qquad T = \frac{I_t \cos \theta_t}{I_i \cos \theta_i} = \frac{n_t \cos \theta_t}{n_i \cos \theta_i} \ t^2$$

Stokes Parameters

- Stokes selected four filters
- Each filter transmits exactly half the intensity of unpolarized light

Linear: transmits only horizontal component

only light polarized at 45°

Circular: transmits only R-polarized light

$$S_0 = 2I_0$$

$$S_1 = 2I_1 - 2I_0$$

$$S_2 = 2I_2 - 2I_0$$

$$S_3 = 2I_3 - 2I_0$$

Stokes parameters

Stokes Parameters

- The Stokes parameters that describe a mixture of polarized light components is the weighted sum of the Stokes parameters of each component.
- Example: Two components
 - 40% has vertical linear polarization
 - 60% has right circular polarization
- Calculate Stokes parameters:

$$S = \begin{bmatrix} S_0 \\ S_1 \\ S_2 \\ S_3 \end{bmatrix} = 0.4 \times \begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \end{bmatrix} + 0.6 \times \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -0.4 \\ 0 \\ 0 \end{bmatrix}$$

• Degree of polarization:

$$V = \frac{\sqrt{S_1^2 + S_2^2 + S_3^2}}{S_0} = \sqrt{(0.4)^2 + (0.6^2)} = 0.72$$

Mueller Matrices

$$S = \begin{bmatrix} S_0 \\ S_1 \\ S_2 \\ S_2 \end{bmatrix} \Rightarrow S' = MS$$

Example: right circular polarizer

Incident unpolarized light

$$S_0 = 1, S_1 = 0, S_2 = 0, S_3 = 0$$

- Incident unpolarized light
$$S_0=1, S_1=0, S_2=0, S_3=0$$
 - Emerging circular polarization
$$S_0=\frac{1}{2}, S_1=0, S_2=0, S_3=\frac{1}{2}$$

- Mueller matrix:

$$M = \frac{1}{2} \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$

Jones Calculus

- Applies to \vec{E} , not intensity
 - Light must be coherent
- Electric field vectors:

$$\vec{E}_x(z,t) = E_{0x}\hat{\imath}\cos(kz - \omega t + \varphi_x)$$

$$\vec{E}_y(z,t) = E_{0y}\hat{\jmath}\cos(kz - \omega t + \varphi_y)$$

• Jones vector:

$$\widetilde{E} = \begin{bmatrix} E_{0x} e^{i\varphi_x} \\ E_{0y} e^{i\varphi_y} \end{bmatrix} \Rightarrow \overrightarrow{E} = \frac{1}{\sqrt{E_{0x}^2 + E_{0y}^2}} \begin{bmatrix} E_{0x} \\ E_{0y} e^{i\xi} \end{bmatrix}$$

Jones Calculus

- Examples:
 - Horizontal linear polarization: $\vec{E}_x = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$
 - Vertical linear polarization: $\vec{E}_y = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
 - Linear polarization at 45°: $\vec{E}_{45^{\circ}} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
 - Right circular polarization: $\vec{E}_R = \frac{1}{\sqrt{2}} {1 \brack e^{-i\pi/2}} = \frac{1}{\sqrt{2}} {1 \brack -i}$
 - Left circular polarization: $\vec{E}_L = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ \rho^{+i\pi/2} \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ i \end{bmatrix}$

Jones Calculus

• $\overrightarrow{E'}$ and \overrightarrow{E} are related by a 2x2 matrix (the Jones matrix):

$$\overrightarrow{E'} = A \overrightarrow{E}$$

• If light passes through several optical elements, then

$$\overrightarrow{E'} = A_n \cdots A_2 A_1 \overrightarrow{E}$$

- Examples:

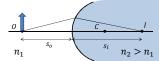
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Examples:

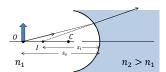
— Transmission through an optically inactive material: $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ — Rotation of the plane of linear polarization (eg, propagation through a sugar solution) $A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$

$$A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$$

Geometric Optics


- Law of reflection: $\theta_1' = \theta_1$
- Law of refraction (Snell's law): $n_1 \sin \theta_1 = n_2 \sin \theta_2$
- Make sure you understand the geometry and sign conventions for lenses and mirrors:

$$rac{1}{s}+rac{1}{s\prime}=rac{1}{f}$$
 where $f=-rac{r}{2}$ (for a concave mirror)

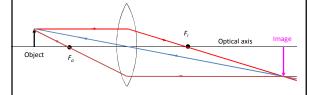


In this diagram, r is negative, but f, s and s' are all positive.

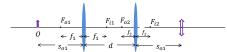
Spherical Refracting Surfaces

$$\frac{n_1}{s_o} + \frac{n_2}{s_i} = \frac{n_2 - n_1}{R}$$
All quantities are positive here.

$$\frac{n_1}{s_o} + \frac{n_2}{s_i} = \frac{n_2 - n_1}{R}$$


(same formula but now R<0)

Thin Lenses


$$\frac{1}{s_o} + \frac{1}{s_i} = (n_l - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right) = \frac{1}{f}$$

 $m_T = -s_i/s_o$ (transverse magnification)

• You should be able to calculate image positions and draw ray diagrams:

Multiple Thin Lenses

- Two techniques:
- Calculate position of intermediate image formed by first lens, then the final image formed by second lens
 Use front/back focal lengths:
 Front focal length:


f. f. l. =
$$\frac{f_1(d-f_2)}{d-(f_1+f_2)}$$

Back focal length:

b. f. l. =
$$\frac{f_2(d - f_1)}{d - (f_1 + f_2)}$$

Thick Lenses

- Two approaches:
 - Calculate positions of intermediate images formed by each spherical refracting surface
 - Calculate positions of principle planes:

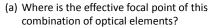
Focal length: $\frac{1}{f} = (n-1) \left[\frac{1}{R_1} - \frac{1}{R_2} + \frac{(n-1)d}{nR_1R_2} \right]$ Principal planes: $h_1 = -\frac{f(n-1)d}{nR_2}$, $h_2 = -\frac{f(n-1)d}{nR_1}$

Ray Tracing

• Ray vector: $\overrightarrow{r_i} = \begin{bmatrix} n_i \alpha_i \\ y_i \end{bmatrix}$

- Transfer matrix: $T=\begin{bmatrix}1&0\\d/n&1\end{bmatrix}$ Refraction matrix: $R=\begin{bmatrix}1&-D\\0&1\end{bmatrix}$, $D=\frac{n_t-n_i}{R}$ Mirror matrix: $M=\begin{bmatrix}-1&-2n/R\\0&1\end{bmatrix}$

Aberrations


- Images usually suffer from some degree of distortion
 - Seidel's primary aberrations
 - Spherical
 - Coma
 - Astigmatism
 - Field curvature
 - Distortion
 - Chromatic aberrations

Typical Exam Questions

- An optical system consists of a horizontal linear polarizer, a solution of dextrorotary sugar, which rotates the plane of polarized light by $+45^{\circ}$, followed by a left circular polarizing filter.
- (a) Write the Mueller matrices for each component
- (b) Calculate the intensity of transmitted light if the incident light is unpolarized
- (c) Calculate the intensity of transmitted light if the incident light is left circular polarized
- (d) Is the system symmetric? That is, is the intensity of transmitted light the same if the paths of all light rays are reversed?

Typical Exam Questions

 An optical system consists of a thin lens with focal length f and a concave spherical mirror with radius R as shown:

(b) What is the transverse magnification?

Typical Exam Questions

- Answer one, or the other, but not both...
- (a) Describe two types of optical aberration and techniques that can be used to minimize them.
- (b) Compare and contrast the assumptions and main features of Fraunhofer and Fresnel diffraction. Under what circumstances is Fraunhofer diffraction a special case of Fresnel diffraction?