

Physics 42200 Waves & Oscillations

Lecture 4 – French, Chapter 3

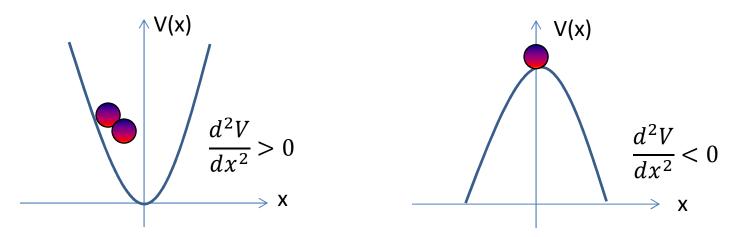
Spring 2016 Semester

Matthew Jones

Energy Considerations

• The force in Hooke's law is

$$F(x) = -kx$$


 Potential energy can be used to describe conservative forces:

$$\vec{F} = -\nabla V(\vec{x})$$
$$F = -\frac{dV}{dx}$$

- The force vanishes when dV/dx = 0
- Local minimum when

$$\frac{d^2V}{dx^2} > 0$$

Energy Considerations

- The system will oscillate about a stable equilibrium point.
- If the minimum is parabolic, then the spring constant is

$$k = \frac{d^2V}{dx^2}$$

Potential energy function for a spring:

$$V(x) = \frac{1}{2}k x^2$$

Energy Considerations

Kinetic energy:

$$T = \frac{1}{2}m\,\dot{x}^2$$

Total energy:

$$E = T + V = \frac{1}{2}m\,\dot{x}^2 + \frac{1}{2}k\,x^2$$

Total energy is conserved:

$$\frac{dE}{dt} = 0$$

Simple Harmonic Motion

Start from Newton's second law:

$$m\ddot{x} + kx = 0$$

• Multiply by \dot{x} :

$$m\dot{x}\ddot{x} + k\dot{x}x = 0$$

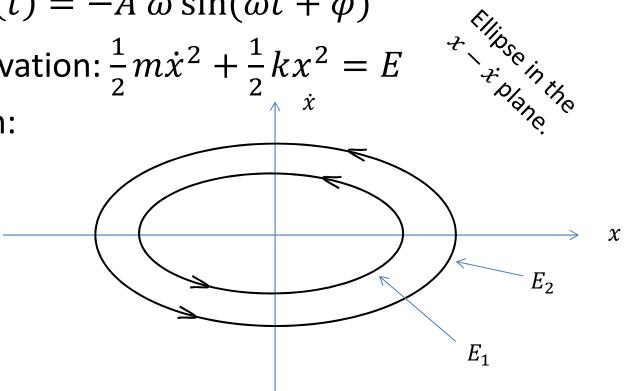
Notice that

$$\frac{d}{dt}\dot{x}^2 = 2\dot{x}\ddot{x}$$
$$\frac{d}{dt}x^2 = 2x\dot{x}$$

So we can write

$$\frac{d}{dt}\left(\frac{1}{2}m\dot{x}^2 + \frac{1}{2}kx^2\right) = 0$$

Which implies that

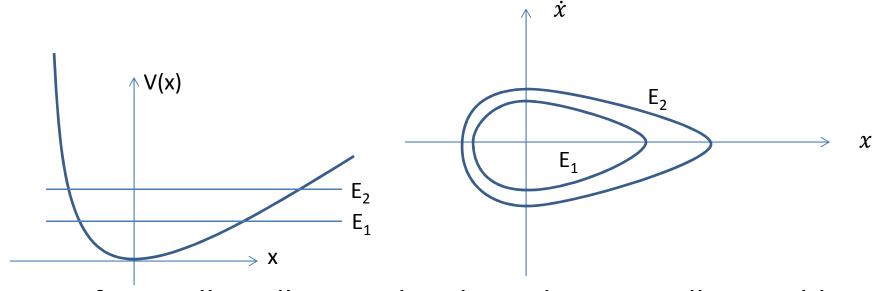

$$\frac{1}{2}m\dot{x}^2 + \frac{1}{2}kx^2 = E = const.$$

Simple Harmonic Motion

$$x(t) = A \cos(\omega t + \varphi)$$

$$\dot{x}(t) = -A \omega \sin(\omega t + \varphi)$$

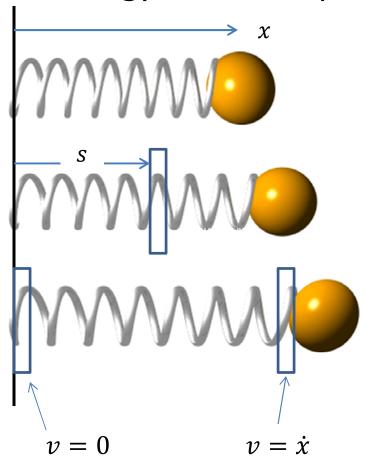
• Energy conservation: $\frac{1}{2}m\dot{x}^2 + \frac{1}{2}kx^2 = E$


• Phase diagram:

The energy conservation relation can tell us a lot about the motion even when we can't solve for x(t).

Phase Diagrams

- Phase diagrams are useful for describing the motion even when we can't solve for x(t) exactly.
- Example:


- But for small oscillations the phase diagram will resemble an ellipse.
- Study Assignment #2 from 2014 for an example.

A More Realistic Model

- So far we considered a mass attached to a spring.
- The spring was assumed to be massless.
- What if the spring has a finite mass *M*?

Physical Spring

 When the mass is in motion, how much kinetic energy does the spring have?

- 1. The spring has a total length x and total mass M
- 2. The velocity of the fixed end of the spring is always zero
- 3. The velocity of the moving end of the spring is given by \dot{x}
- 4. At a distance *s* from the fixed end, the velocity will be

$$v = \frac{s}{x}\dot{x}$$

5. The mass of an element of length ds will be

$$dM = \frac{M}{x} ds$$

Physical Spring

Kinetic energy of one element of the spring:

$$dT = \frac{1}{2}v^2 dM = \frac{1}{2} \left(\frac{s}{x}\dot{x}\right)^2 \frac{M}{x} ds$$

 We get the total kinetic energy by integrating over the length of the spring:

$$T_{spring} = \frac{M}{2x^3} (\dot{x})^2 \int_0^x s^2 ds = \frac{M}{6x^3} (\dot{x})^2 s^3 \Big|_0^x$$
$$= \frac{M}{6} (\dot{x})^2$$

• Total kinetic energy is $T = T_{mass} + T_{spring}$

Physical Spring

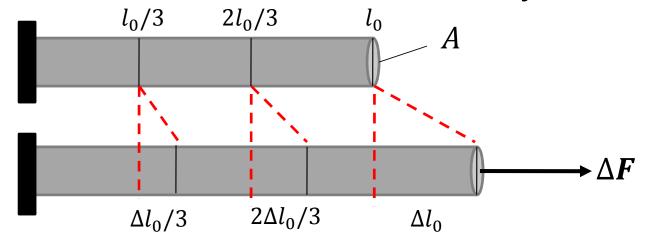
Total kinetic energy:

$$T = \frac{1}{2}m(\dot{x})^2 + \frac{1}{6}M(\dot{x})^2 = \frac{1}{2}\left(m + \frac{M}{3}\right)(\dot{x})^2$$

Potential energy:

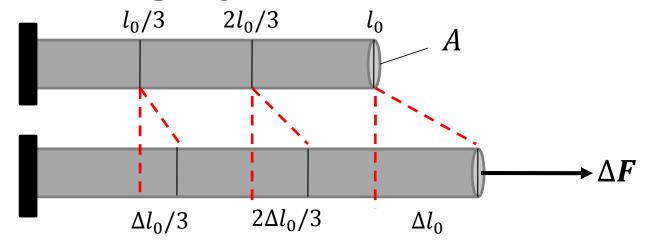
$$V = \frac{1}{2}kx^2$$

Total energy:


$$E = T + V = \frac{1}{2} \left(m + \frac{M}{3} \right) (\dot{x})^2 + \frac{1}{2} kx^2$$

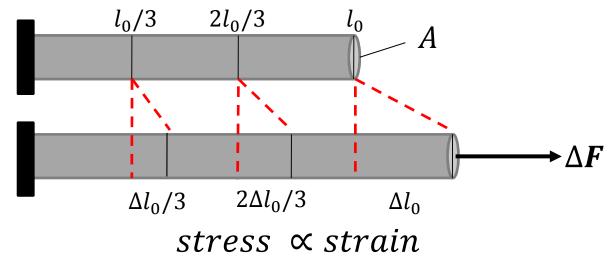
- We know that when $E=\frac{1}{2}m(\dot{x})^2+\frac{1}{2}kx^2$ the frequency is $\omega=\sqrt{k/m}$
- Therefore, the oscillation frequency of the physical spring must be

$$\omega = \sqrt{\frac{k}{m + M/3}}$$


Oscillating Systems: Elastic Bodies

- Rigid bodies are usually elastic although we may not normally notice.
- What characterizes how elastic an object is?

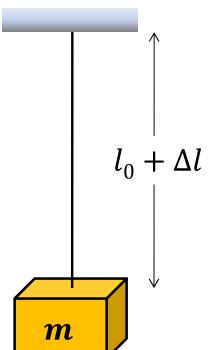
- The extension under the force ΔF is proportional to the original length, l_0 .
- Constant of proportionality: $strain \equiv \Delta l_0/l_0$


Oscillating Systems: Elastic Bodies

- The same deformation would result if ΔF were increased provided A also increased by the same amount.
- Stress is defined: $stress = \Delta F/A$
- When the strain is small (eg, $\Delta l_0/l_0 < 1\%$), the stress is proportional to the strain:

 $stress \propto strain$

Oscillating Systems: Elastic Bodies


Constant of proportionality is called Young's modulus

$$\frac{\Delta F}{A} = Y \frac{\Delta l_0}{l_0}$$

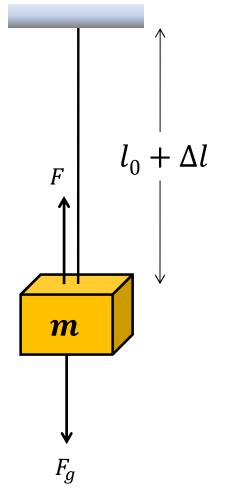
 Newton's third law: when the material is stretched by a distance x, the material will exert a reaction force

$$F = -\frac{YAx}{l_0} = -kx$$
 where $k = YA/l_0$.

Example

- Steel has $Y = 20 \times 10^{10} \ N/m^2$
- Suppose that m=1 kg, $l_0=2$ m and has a diameter of d=0.5 mm (24 AWG)
 Cross sectional area is

$$A = \pi \left(\frac{d}{2}\right)^2$$

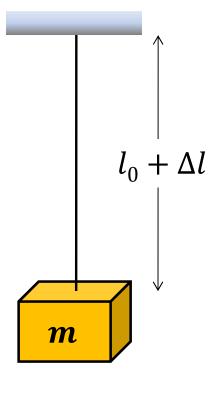

Restoring force:

$$F = -\frac{YA\Delta l}{l_0} = -\frac{\pi Y d^2}{4 l_0} \Delta l = -k\Delta l$$

$$k = \frac{\pi \cdot (20 \times 10^{10} \ N/m^2) \cdot (0.0005 \ m)^2}{4 \cdot (2 \ m)}$$

$$= 1.96 \times 10^4 \ N/m$$

Example


• How much will the wire stretch under the weight of the mass, m?

$$F_g = mg = k\Delta l$$

$$\Delta l = \frac{mg}{k} = \frac{(1 \, kg) \cdot (9.81 \, N/kg)}{1.96 \times 10^4 \, N/m}$$

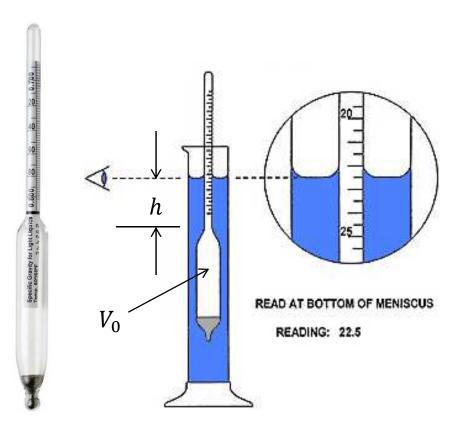
$$= 5.00 \times 10^{-4} \, m$$

Example

Newton's second law:

$$m\frac{d^2}{dt^2}\Delta l = -k\Delta l$$
$$\frac{d^2}{dt^2}\Delta l + \frac{k}{m}\Delta l = 0$$
$$\frac{d^2}{dt^2}\Delta l + \omega^2\Delta l = 0$$

Solutions can be written

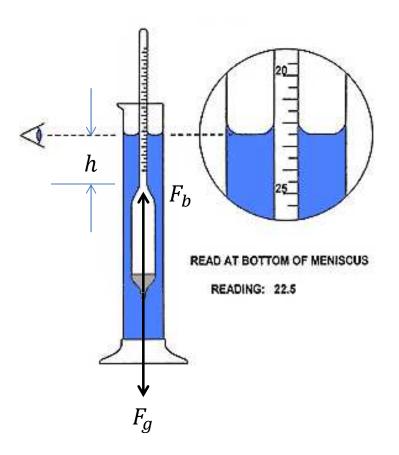

$$\Delta l(t) = A \cos(\omega t + \varphi)$$

Oscillation frequency is

$$f = \frac{\omega}{2\pi} = \frac{1}{2\pi} \sqrt{k/m} = \frac{1}{2\pi} \sqrt{\frac{1.96 \times 10^4 N/m^2}{1 kg}}$$
$$= 22.3 Hz$$

Floating Objects

Hygrometer: measures density of liquids


Archimedes' principle: Buoyant force is equal to the weight of the volume of liquid displaced.

If the stem has a diameter of d then the displaced volume is

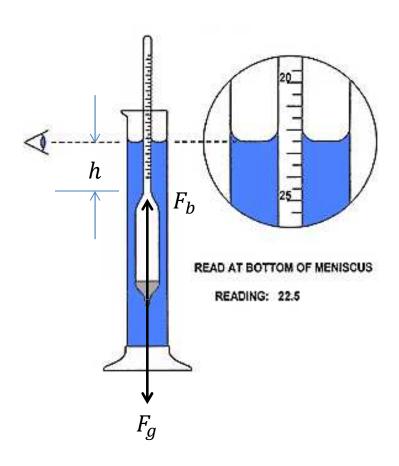
$$V = V_0 + \pi h \left(\frac{d}{2}\right)^2$$

$$F_b = \rho g \left(V_0 + \pi h \left(\frac{d}{2}\right)^2\right)$$

Floating Objects

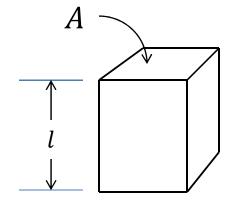
When in static equilibrium,

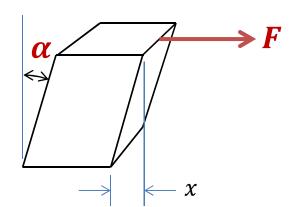
$$F_b = F_g$$


$$\rho g \left(V_0 + \pi h \left(\frac{d}{2} \right)^2 \right) = mg$$

$$h = \frac{m/\rho - V_0}{\pi d^2/4}$$

When the hydrometer is displaced by an additional distance Δh , the net force is

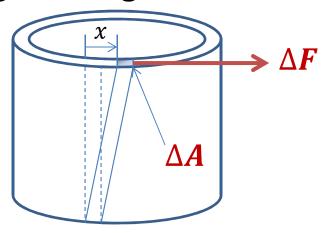

$$F = -\pi \rho g \left(\frac{d}{2}\right)^2 \Delta h$$


Floating Objects

$$m\frac{d^2}{dt^2}\Delta h = -\pi\rho g \left(\frac{d}{2}\right)^2 \Delta h$$

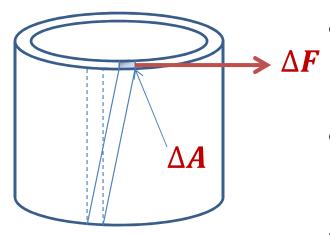
$$\frac{d^2}{dt^2}\Delta h + \omega^2 \Delta h = 0$$
 where $\omega = \frac{d}{2}\sqrt{\frac{\pi\rho g}{m}}$

Shear Forces


• Angle α is proportional to F and inversely proportional to A:

$$\frac{F}{A} = n\alpha \approx n \frac{x}{l}$$

- The constant of proportionality is called the *shear* modulus, denoted n.
- For example, steel has $n = 8 \times 10^{10} \ N/m^2$


Shear Forces

• Torsion of a thin-walled tube of radius r and length l twisted through an angle θ :

- Angle of deflection: $\frac{x}{l} = \frac{r\theta}{l}$
- Shear force: $\Delta F = \frac{nr\theta \Delta A}{I}$

Shear Forces

Differential element of torque:

$$\Delta M = r \Delta F$$

Differential element of area:

$$\Delta A = r \Delta r \Delta \varphi$$

Integrate around the circle...

$$M = \int dM = r \int dF = \frac{nr^2\theta}{l} \int dA = \frac{nr^2\theta}{l} \int_0^{2\pi} (r\Delta r) d\varphi = \frac{2\pi nr^3 \Delta r \theta}{l}$$

• Total torque on a solid cylinder of radius R: integrate over r from 0 to R.

$$M = \frac{2\pi n\theta}{l} \int_0^R r^3 dr = \frac{\pi n R^4 \theta}{2l}$$

Torsion Pendulum

• Suppose an object with moment of inertia $I=0.00167~kg\cdot m^2$ is suspended from a steel wire of length $\ell=2~m$ with a diameter of d=0.5~mm (24 AWG).

$$I\ddot{\theta} = -\frac{\pi n R^4 \theta}{2\ell}$$

$$\ddot{\theta} + \omega^2 \theta = 0$$
 where $\omega = \sqrt{\frac{\pi n R^4}{2l\ell}} = \sqrt{\frac{\pi n d^4}{32l\ell}}$

• Frequency of oscillation:

$$f = \frac{1}{2\pi} \sqrt{\frac{\pi \cdot (8 \times 10^{10} \ N/m^2) \cdot (0.0005 \ m)^4}{32 \cdot (0.00167 \ kg \cdot m^2) \cdot (2 \ m)}} = 0.061 \ Hz$$