

Physics 42200

Waves & Oscillations

Lecture 3 – French, Chapter 1

Spring 2016 Semester

Matthew Jones

Announcements

- 1. Assignment #1 should be straight forward
 - You can download it from the course web page
 - Ask questions in class if you are completely stuck
- Make use of office hours if you are still completely stuck...
- 2. No class on Monday...

http://www.purdue.edu/diversity-inclusion/mlk/

3. Favorite quote from Martin Luther King, Jr:

Nothing in all the world is more dangerous than sincere ignorance and conscientious stupidity.

The Mass/Spring System

- We've been discussing a mass attached to a spring:
 - Force acting ON the mass:

$$F(x) = -k x$$

- Acceleration due to the force:

$$F(x) = m \frac{d^2x}{dt^2}$$

- So far, we haven't said much about the coordinate system we were using.
- This is because Hooke's law, as written, defines both the origin (x = 0 when the force vanishes).
- We didn't specify what direction +x was, but the solution would be consistent with the initial conditions.

The Mass/Spring System

- We also ignored other forces on the mass, (namely gravity) which we know exists.
- Furthermore, we can see that F(x) = -k x will not describe the spring when it is fully compressed.

The Mass/Spring System

• We are also usually interested in displacements where the force is described by Hooke's law.

The Mass/Spring System

• Let's analyze a more realistic mass/spring problem:

A spring with uncompressed length ℓ is attached to a support which is at a height h. A mass m is attached to the other end of the spring. If the mass is initially displaced so that it is at a height y_0 , what will the resulting motion be when it is released from rest?

Mass/Spring System

• You will have to draw a diagram:

Let h be the height of the support. Let ℓ be the uncompressed length of the spring. Let y represent the height of the mass.

When the spring is uncompressed, $y=h-\ell$.

Mass/Spring System

• Identify the forces:

For a given y, how much has the spring been stretched?

$$\Delta y = h - \ell - y$$

We assume that the force is, at all times, described by Hooke's law:

$$F(\Delta y) = +k \, \Delta y$$

There is also the constant force of gravity:

$$F_g = -mg$$

Mass/Spring System

• Sum of the forces:

$$\sum F_{y} = F(\Delta y) + F_{g} = k\Delta y - mg$$

• But recall that $\Delta y = h - \ell - y$...

$$\sum F_y = k(h - \ell - y) - mg$$

$$=\underbrace{k(h-\ell)-mg-ky}$$

This is just a constant.

Try to stay organized... keep all constant terms together!

Mass/Spring System

• Newton's second law:

$$\sum F_y = m \; \frac{d^2 y}{dt^2}$$

• This is the differential equation we must solve:

$$m \frac{d^2y}{dt^2} - F_y = 0$$

$$m \frac{d^2y}{dt^2} - k(h - \ell) + mg + ky = 0$$

$$\ddot{y} + \omega^2 y = \frac{k(h - \ell) - mg}{m}$$

Mass/Spring System

$$\ddot{y} + \omega^2 y = \frac{k}{m}(h - \ell) - g$$

But wait! This is NOT of the form

$$\ddot{y} + \omega^2 y = 0$$

• Therefore, the solutions are not going to be of the form

$$y(t) = \mathbf{A} \, \cos(\omega t + \boldsymbol{\varphi})$$

• But then what are they?

Homogeneous Equation

• This is called the homogeneous equation:

$$\ddot{y} + \omega^2 y = 0$$

• The general solutions to the homogeneous equation are of the form:

$$y(t) = A\cos(\omega t + \varphi)$$

Nonhomogeneous Equation

$$\ddot{y}+\omega^2 y=\frac{k(h-\ell)-mg}{m}$$

A solution to the non-homogeneous equation is called a "particular solution". Can we find one?

$$y=\frac{k(h-\ell)-mg}{\omega^2m}=(h-\ell)-\frac{mg}{k}$$
 • This solves the nonhomogeneous equation

because it is just a constant, so

$$\frac{d^2y}{dt^2} = 0$$

Nonhomogeneous Equation

• A general solution to the nonhomogeneous equation is the sum of a general solution to the homogeneous equation and a particular solution to the nonhomogeneous equation.

$$y(t) = \mathbf{A}\cos(\omega t + \mathbf{\varphi}) + (h - \ell) - \frac{mg}{k}$$

• Now we can solve for the constants of integration using the initial conditions.

Nonhomogeneous Equation

$$y(t) = \mathbf{A}\cos(\omega t + \mathbf{\varphi}) + (h - \ell) - \frac{mg}{k}$$

• The initial velocity is:

$$\left. \frac{dy}{dt} \right|_{t=0} = -A\omega \sin(\varphi) = 0$$

- Therefore, $\varphi = 0$.
- The initial displacement is

$$y(0) = \frac{A}{k} + (h - \ell) - \frac{mg}{k} = y_0$$
• Therefore, $A = y_0 - (h - \ell) + mg/k$.

Another way to look at it...

- We expect the mass to oscillate about an equilibrium position.
- What is the equilibrium displacement, \overline{y} ?
- When the mass is at rest,

$$\frac{dy}{dt} = 0 \text{ and } \frac{d^2y}{dt^2} = 0$$

• The spring force and the force of gravity must cancel:

$$k(h-\ell-\overline{y})=mg$$

$$\overline{y} = (h - \ell) - \frac{mg}{k}$$

Another way to look at it...

• What is the net force due to a small displacement, u, away from equilibrium?

$$F(u) = -k u$$

• Differential equation for u:

$$m\frac{d^2u}{dt^2} = -k u$$
$$\ddot{u} + \omega^2 u = 0$$

• This we know how to solve:

$$u(t) = A \cos(\omega t + \varphi)$$

Absolute position of the mass is

$$y(t) = \overline{y} + u = \frac{\mathbf{A}}{\cos(\omega t + \mathbf{\varphi})} + (h - \ell) - \frac{mg}{k}$$

Observations

- The frequency, ω , does not depend on
 - The initial conditions
 - Additional constant forces
- The mass oscillates about an equilibrium position which can be calculated using statics.
 - Just algebra, since all derivatives vanish
- Coordinate transformations can be very useful
 - The nonhomogeneous equation can be transformed to a homogeneous equation by adding a constant offset to the displacement

Deviations from Hooke's Law

- Not all forces are perfectly linear in displacement.
- Sometimes they are approximately linear for only small displacements, u, about an equilibrium position.
 - At the equilibrium position, u = 0, the force vanishes F(0) = 0
 - An arbitrary force can be described by a power series $F(u) = a_1 u + a_2 u^2 + a^3 u^3 + \dots$

(notice that there is no constant a_0 term)

- How can we determine the coefficients?

Deviations from Hooke's Law

• Differentiate both sides, evaluate for u=0:

$$\frac{dF}{du}\Big|_{u=0} = (a_1 + 2a_2u + 3a_3u^2 + \cdots)\Big|_{u=0}$$

$$a_1 = F'(0)$$

- Hooke's law: F(u) = -k u
- Approximation for small displacements:

$$F(u) \approx a_1 u$$

• The "effective" spring constant for small displacements

$$k = -\frac{dF}{du}\Big|_{u=0}$$

Potential Energy

• Recall from mechanics that for conservative forces, we can write

$$\vec{F} = -\nabla V$$

• In just one dimension this is

$$F = -\frac{dV}{dx}$$

• Write the potential energy as a power series:
$$V(x) = b_0 + b_1 x + b_2 x^2 + \cdots$$

Potential Energy

• The force is:

F =
$$-\frac{dV}{dx}$$
 = $-b_1 - 2b_2x - \cdots$
• The force vanishes when $dV/dx = 0$

- This is the equilibrium position, \bar{x} .
- The effective spring constant is

$$k = -\frac{dF}{dx} = \frac{d^2V}{dx^2}$$
(This must be positive)

•			