

Physics 42200

Waves & Oscillations

Lecture 36 – Interference

Spring 2016 Semester

Optical Path Length

$$\vec{E}(z,t) = \vec{E}_0 \cos(kz - \omega t)$$

• What is the phase after propagating a distance d?

$$\delta = kd = \frac{2\pi d}{\lambda_0}$$

- $-\lambda_0$ is the wavelength in vacuum
- In a material with index of refraction n, $\lambda = \frac{\lambda_0}{n}$
- Phase is now

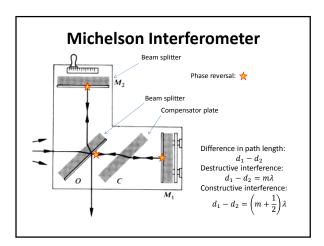
$$\delta' = k'd = \frac{2\pi nd}{\lambda_0}$$

Optical Path Length

- Consider light with wavelength λ_0 in vacuum that is split into two optical paths.
- Phase advance over each path:

$$\delta_1 = \frac{2\pi n_1 d_1}{\lambda_0}$$

$$\delta_2 = \frac{2\pi n_2 d_2}{\lambda}$$

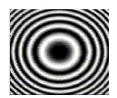

• Phase difference between two paths:
$$\Delta\delta = \frac{2\pi}{\lambda_0}(n_1d_1-n_2d_2)$$

• Constructive interference when

$$n_1d_1 - n_2d_2 = m\lambda_0$$
 where $m = 0,1,2,...$

• The *optical path length* is defined $\ell = nd$.

Michelson Interferometer



Michelson Interferometer
Equivalent optics:
$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$

Michelson Interferometer

• Bright fringes occur when

$$\delta = 2\pi \left(\frac{2d}{\lambda \cos \theta} + \frac{1}{2} \right) = 2\pi m$$

Michelson Interferometer

 How does the position of a fringe change when the path length changes?

Michelson Interferometer

- Application: Consider two closely spaced wavelengths, λ and λ'
- Bright fringes from one wavelength occur when

$$\frac{2d}{\lambda} = m$$

 $\bullet\,\,$ Bright fringes from the other wavelength occur when

$$\frac{2d}{\lambda'} = m'$$

• The two fringes will coincide when

$$\frac{2d}{\lambda} = \frac{2d}{\lambda'} + N$$

Michelson Interferometer

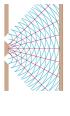
Adjust the position of the movable mirror so that the next set of fringes coincide

$$\frac{2d'}{\lambda} = \frac{2d'}{\lambda'} + N + 1$$

• Subtract these:

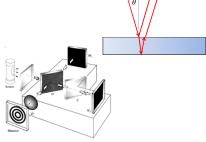
$$\frac{2d'}{\lambda} - \frac{2d}{\lambda} = \frac{2d'}{\lambda'} - \frac{2d}{\lambda'} + 1$$
$$\lambda' - \lambda = \frac{\lambda \lambda'}{2\Delta d} \approx \frac{\lambda^2}{2\Delta d}$$

For the yellow sodium line,


$$\lambda = 588.991 \ nm \\ \lambda' = 589.595 \ nm$$

$$\Delta \lambda = 0.604 \ nm$$

$$\Delta d = \lambda^2 / 2\Delta \lambda = 287,472 \ nm = 0.287 \ mm$$

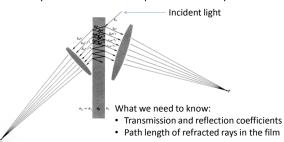

Michelson Interferometer

Multiple Beam Interference

• Previously we considered only two interfering beams:

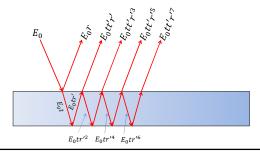
Multiple Beam Interference

- In many situations, a coherent beam can interfere with itself multiple times
- · Consider a beam incident on a thin film
 - Some component of the light will be reflected at each surface and some will be transmitted

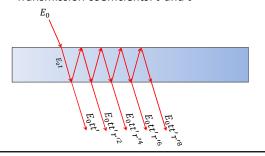

Incident light

Each transmitted beam will have a different phase relative to the adjacent beams.

What is the total intensity of the reflected light?


Multiple Beam Interference

- All transmitted and reflected rays will be parallel
- They can be focused onto points P and P' by lenses:


Multiple Beam Interference

- Reflection coefficients: r and r^\prime
- ullet Transmission coefficients: t and t^\prime

Multiple Beam Interference

- Reflection coefficients: r and r^\prime
- Transmission coefficients: t and t^\prime

Multiple Beam Interference

• The additional phase in the film is always the same:

$$\delta = \frac{2nkd}{\cos\theta_t}$$

• If the initial phase is zero, then

$$E_{1r} = E_0 r e^{i\omega t}$$

$$E_{2r} = E_0 t t' r' e^{i(\omega t - \delta)}$$

$$E_{3r} = E_0 t t' r'^3 e^{i(\omega t - 2\delta)}$$

$$E_{4r} = E_0 t t' r'^5 e^{i(\omega t - 3\delta)}$$

• In general:

$$\begin{split} E_{Nr} &= E_0 e^{i\omega t} t t' \; r'^{2N-3} e^{-i(N-1)\delta} \\ &= E_0 e^{-i\omega t} t t' r' e^{-i\delta} \left(r'^2 e^{-i\delta}\right)^{N-2} \end{split}$$

Multiple Beam Interference

• The total electric field on one side of the film:

$$E_r = E_0 e^{i\omega t} r + E_0 e^{i\omega t} t t' r' e^{-i\delta} \times \left[1 + r'^2 e^{-i\delta} + (r'^2 e^{-i\delta})^2 + (r'^2 e^{-i\delta})^3 + \cdots \right]$$

• This is in infinite sum of the form:

$$\sum_{n=0}^{\infty} z^n = \frac{1}{1-z} \quad \text{(when } |z| < 1\text{)}$$

• Total electric field:

$$E_r = E_0 e^{i\omega t} \left[r + \frac{tt'r'e^{-i\delta}}{1 - r'^2e^{-i\delta}} \right]$$

Multiple Beam Interferometry

• Simplifications:

$$r' = -r$$
$$tt' = 1 - r^2$$

• Total electric field:

$$\begin{split} E_r &= E_0 e^{i\omega t} r \left[1 - \frac{(1-r^2)e^{-i\delta}}{1-r^2e^{-i\delta}} \right] \\ &= E_0 e^{i\omega t} r \left[\frac{1-r^2e^{-i\delta}-e^{-i\delta}+r^2e^{-i\delta}}{1-r^2e^{-i\delta}} \right] \\ &= E_0 e^{i\omega t} r \left[\frac{1-e^{-i\delta}}{1-r^2e^{-i\delta}} \right] \end{split}$$

Multiple Beam Interferometry

• The intensity of the light is
$$I_r \propto |E_r|^2$$

$$I_r = I_0 \left\{ r \left[\frac{1 - e^{-i\delta}}{1 - r^2 e^{-i\delta}} \right] \right\}^* \left\{ r \left[\frac{1 - e^{-i\delta}}{1 - r^2 e^{-i\delta}} \right] \right\}$$

$$= I_0 r^2 \frac{(1 - e^{i\delta})(1 - e^{-i\delta})}{(1 - r^2 e^{i\delta})(1 - r^2 e^{-i\delta})}$$

$$= I_0 \frac{2r^2(1 - \cos \delta)}{(1 + r^4) - 2r^2 \cos \delta}$$

• The intensity of the transmitted light is
$$I_t \propto |E_t|^2$$

$$I_t = I_0 \frac{1-r^2}{(1+r^4)-2r^2\cos\delta}$$

Multiple Beam Interferometry

• One more identity will clean this up a bit:

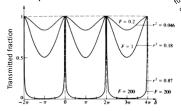
$$\cos \delta = 1 - 2\sin^2(\delta/2)$$

· Reflected intensity:

$$I_r = I_0 \frac{F \sin^2(\delta/2)}{1 + F \sin^2(\delta/2)}$$

· Transmitted intensity:

$$I_t = I_0 \frac{1}{1 + F \sin^2(\delta/2)}$$


- The parameter $F = \left(\frac{2r}{1-r^2}\right)^2$ is called the *coefficient of finesse*
- Notice that $I_0 = I_r + I_t$
 - We assumed that no energy was lost in the film

Multiple Beam Interferometry

The function

$$\mathcal{A}(\theta) = \frac{1}{1 + F \sin^2(\delta/2)}$$

is called the Airy function.

Multiple Beam Interferometry

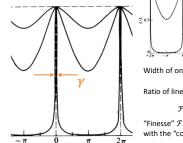
- In practice, some fraction of the light will be absorbed
- Absorptance, *A*, is defined by:

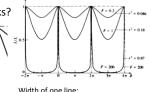
$$T + R + A = 1$$

• This modifies the transmitted intensity:

$$I_t = I_0 \left[1 - \frac{A}{1 - R} \right]^2 \mathcal{A}(\theta)$$

• Example: silver film, 50 nm thick, deposited on glass

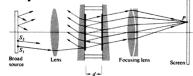

$$R = 0.94, T = 0.01, A = 0.05$$


$$\left[1 - \frac{A}{1 - R}\right]^2 = 0.0278$$

$$F = 1044$$

Multiple Beam Interference

• How sharp are the peaks?


Width of one line:

 $\gamma = 4/\sqrt{F}$ Ratio of line spacing to the width:

"Finesse" \mathcal{F} , not to be confused with the "coefficient of finesse" ${\it F}$.

Previous example: $\mathcal{F}\approx 50$

Fabry-Perot Interferometer

• Phase difference:

$$\delta = \frac{4\pi n_f}{\lambda_0} d\cos\theta_i = 2\pi m$$

$$m\lambda_0 = 2n_f d\cos\theta_i$$

 $m\lambda_0 = 2n_f d\cos\theta_i$

• Differentiate: $m~\Delta\lambda_0 + \Delta m~\lambda_0 = 0$ $\frac{\Delta m}{m} = -\frac{\Delta\lambda_0}{\lambda}$

Fabry-Perot Interferometer

$$\frac{\lambda_0}{\Delta \lambda_0} = \frac{2\pi m}{\Delta \delta}$$

• Smallest resolvable wavelength difference:

$$(\Delta \lambda_0)_{min} = \frac{\lambda_0 (\Delta \delta)_{min}}{2\pi m}$$

• Minimum resolvable phase shift:

$$(\Delta\delta)_{min} \sim \gamma = 4/\sqrt{F}$$

• Chromatic resolving power:

$$\mathcal{R} = rac{\lambda_0}{(\Delta \lambda_0)_{min}} pprox \mathcal{F} m pprox \mathcal{F} \; rac{2n_f d}{\lambda_0}$$

Fabry-Perot Interferometer

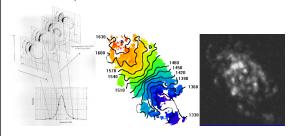
• Typical values:

$$\mathcal{F} = 50$$

$$n_f d = 1 \ cm$$

$$\lambda_0 = 500 \ nm$$

$$R = \frac{\lambda_0 = 500 \text{ nm}}{500 \text{ nm}} = 2 \times 10^6$$


Michelson

Fabry-Perot

Fabry-Perot Interferometer

 The effective gap between the surfaces can be adjusted by changing the pressure of a gas, or by means of piezoelectric actuators

