

Physics 42200 Waves & Oscillations

Lecture 31 – Geometric Optics
Spring 2016 Semester

Field Curvature

- The focal plane is actually a curved surface
- A negative lens has a field plane that curves away from the image plane
- A combination of positive and negative lenses can cancel the effect

Field Curvature

• Transverse magnification, m_T , can be a function of the off-axis distance:

$1, m_T, ca$	in be a funct	ion of
		ПП
	Positive	Negati

(pincushion) distortion Negative (barrel) distortion

Correcting Monochromatic Aberrations

- Combinations of lenses with mutually cancelling aberration effects
- Apertures
- Aspherical correction elements.

Chromatic Aberrations

• Index of refraction depends on wavelength

Chromatic Aberrations Bus foous Fed foous Occupying to 2005 Pearson Prentice Hall, Inc.

Chromatic Aberrations A-CA: axial chromatic aberration $\frac{A\cdot CA}{A\cdot CA} = \frac{A\cdot CA$

Chromatic A	berration

Correcting for Chromatic Aberration It is possible to have refraction without chromatic aberration even when n is a function of λ: Rays emerge displaced but parallel If the thickness is small, then there is no distortion of an image Possible even for non-parallel surfaces: Aberration at one interface is compensated by an opposite aberration at the other surface.

Chromatic Aberration

• Focal length:

$$\frac{1}{f} = (n-1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

• Thin lens equation:

$$\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2}$$

 Cancel chromatic aberration using a combination of concave and convex lenses with different index of refraction

Chromatic Aberration

 This design does not eliminate chromatic aberration completely – only two wavelengths are compensated.

Commercial Lens Assemblies

• Some lens components are made with ultralow dispersion glass, eg. calcium fluoride

Prisms

• Dispersing prism:

• Total deviation:

$$\delta = \theta_{i1} + \sin^{-1} \left[(\sin \alpha) \sqrt{n^2 - \sin^2 \theta_{i1}} - \sin \theta_{i1} \cos \alpha \right] - \alpha$$

Prisms

• The minimum deflection, δ_{min} , occurs when $\theta_{i1}=\theta_{t2}$:

$$n = \frac{\sin[(\delta_{min} + \alpha)/2]}{\sin(\alpha/2)}$$

This can be used as an effective method to measure n

A disadvantage for analyzing colors is the variation of δ_{min} with θ_{l1} - the angle of incidence must be known precisely in order to determine the wavelength as a function of the angle θ_{l2} .

Pellin-Broca Prism

One color is refracted through exactly 90°.

Rotating the prism about point A selects different colors.

Ideal for selecting a particular wavelength with minimal change to an optical system.

Abbe Prism

- A particular wavelength is refracted through 60°
- Rotating the prism about point O selects different colors.

Ernst Abbe 1840-1905

Reflective Prisms

- Total internal reflection on one surface
- Equal and opposite refraction at the other surfaces
- Deflection angle:

$$\delta = 2\theta_{i1} + \alpha$$

 Independent of wavelength (non-dispersive or achromatic prism)

Reflecting Prisms

- Why not just use a mirror?
 - Mirrors produce a reflected image
- Prisms can provide ways to change the direction of light while simultaneously transforming the orientation of an image.

Reflecting Prisms

• Two internal reflections restores the orientation of the original image.

The Porro prism

The penta prism

Dove Prism/Image Rotator

Roof Prism

 Right-angle reflection without image reversal (image rotation)

Reflect half the light in a different direction Important application: interferometry - Transmitted and reflected beams are phase coherent. Beam splitter plate - Partially reflective surfaces Beam splitter cube: - Right angle prisms cemented together - Match transmission of both polarization components

Fiber Optics

- Development of fiber optics:
 - 1854: John Tyndall demonstrated that light could be bent by a curved stream of water
 - 1888: Roth and Reuss used bent glass rods to illuminate body cavities for surgical procedures
 - 1920's: Baird and Hansell patented an array of transparent rods to transmit images
- Significant obstacles:
 - Light loss through the sides of the fibers
 - Cross-talk (transfer of light between fibers)
 - 1954: Van Heel studied fibers clad with a material that had a lower index of refraction than the core

Fiber Optics: Losses

Consider large fiber: diameter $D >> \lambda \rightarrow$ can use geometric optics

Path length traveled by ray:

 $l = L/\cos\theta_{\scriptscriptstyle t}$ Number of reflections:

$$N = \frac{l}{D/\sin\theta_t} \pm 1$$

Using Snell's Law for θ_t :

Example:

$$L = 1 \text{ km}, D = 50 \text{ } \mu\text{m}, n_f = 1.6, \ \theta_i = 30^{\circ}$$

 $N = 6,580,000$

Note: frustrated internal reflection, irregularities → losses!

 $N = \frac{L\sin\theta_i}{D\sqrt{n_f^2 - \sin^2\theta_i}} \pm 1$

'Step-index' Fiber Cladding - transparent layer around the core of a fiber (reduces losses and f/t) $N = \frac{L \sin \theta_i}{D \sqrt{n_f^2 - \sin^2 \theta_i}} \pm 1$ For total internal reflection need $n_c < n_f$

For lower losses need to reduce N, or maximal θ_{ν} the latter is defined by critical angle for total internal reflection:

$$\sin \theta_c = \frac{n_c}{n_f} = \sin(90^\circ - \theta_t) = \cos(\theta_t) \implies \sin \theta_{\text{max}} = \frac{\sqrt{n_f^2 - n_c^2}}{n_t}$$

$$n_f = 1 \text{ for air}$$

Angle $\theta_{\rm max}$ defines the light gathering efficiency of the fiber, or numerical aperture NA:

$$\begin{aligned} N\!A &\equiv n_{\!_{f}} \sin \theta_{\rm max} = \sqrt{n_{\!_{f}}^2 - n_{\!_{c}}^2} \\ f / \# &\equiv \frac{1}{2 (N\!A)} \end{aligned} \qquad \text{Largest NA=1} \\ \text{Typical NA = 0.2 ... 1}$$

Data Transfer Limitations

1. Distance is limited by losses in a fiber. Losses α are measured in decibels (dB) per km of fiber (dB/km), i.e. in logarithmic scale:

$$\alpha = -\frac{10}{L} \log \left(\frac{P_o}{P_i} \right) \implies \frac{P_o}{P_i} = 10^{-aL/10} \qquad \begin{array}{c} P_o \text{ - output power} \\ P_i \text{ - input power} \\ L \text{ - fiber length} \end{array}$$
le: $\alpha = P_i/P_i$ over 1 km

Example: $\alpha = P_o/P_i$ over 1 km 10 dB 1:10

And f/# is:

10 dB 1:10 20 dB 1:100 30 dB 1:1000

2. Bandwidth is limited by pulse *broadening* in fiber and processing electronics

Pulse Broadening

Multimode fiber: there are many rays (modes) with different OPLs and initially short pulses will be broadened (intermodal dispersion)

For ray along axis: $\label{eq:for ray entering at θ_{max}:}$

$$t_{\min} = L/v_f = Ln_f/c$$

$$t_{\max} = l/v_f = Ln_f^2/(cn_c)$$

The initially short pulse will be broadened by:

Making n_c close to n_f reduces the effect!

$$\Delta t = t_{\text{max}} - t_{\text{min}} = \frac{Ln_f}{c} \left(\frac{n_f}{n_c} - 1 \right)$$

Pulse Broadening: Example

$$\Delta t = \frac{Ln_f}{c} \left(\frac{n_f}{n_c} - 1 \right) = \frac{10^6 \cdot 1.5}{3 \times 10^8} \left(\frac{1.5}{1.489} - 1 \right) s = 3.7 \times 10^{-5} s = 37 \mu s$$

Bandwidth ~
$$\frac{1}{3.7 \times 10^{-5} s} = 27 \text{ kbps} \leftarrow \frac{\text{kilobits per second}}{\text{= ONLY 3.3 kbytes/s}}$$

Multimode fibers are not used for communication!

Graded and Step Index Fibers

Step index: the change in \boldsymbol{n} is abrupt between cladding and core Graded index: n changes smoothly from n_c to n_f

Single Mode Fiber

To avoid broadening need to have only one path, or mode

Single mode fiber: there is only one path, all other rays escape from the fiber

Geometric optics does not work anymore: need wave optics. Single mode fiber core is usually only 2-7 micron in diameter

Single Mode Fiber: Broadening			
clad	Problem: shorter the pulse, broader the spectrum. refraction index depends on wavelength		
'Transform' limited pulse product of spectral full width at half maximum (fwhm) by time duration fwhm:	0.5 — 0.5 —		
$\Delta f \Delta t \approx 0.2$	-1.0 10 20 30 (f(5))		
A 10 fs pulse at 800 nm is ~40 nm wide spectrally If second derivative of <i>n</i> is not zero this pulse will broaden in fiber rapidly			
Solitons: special pulse shapes that do not change while propagating			