

Physics 42200

Waves & Oscillations

Lecture 29 – Geometric Optics

Spring 2016 Semester

Thin Lens Equation

First surface:

$$\frac{n_m}{s_{o1}} + \frac{n_l}{s_{i1}} = \frac{n_l - n_r}{R_1}$$

First surface:
$$\frac{n_m}{s_{o1}} + \frac{n_l}{s_{i1}} = \frac{n_l - n_m}{R_1}$$
Second surface:
$$\frac{n_l}{-s_{i1} + d} + \frac{n_m}{s_{i2}} = \frac{n_m - n_l}{R_2}$$

Add these equations and simplify using $n_m=1$ and $d \to 0$:

$$\frac{1}{s_o} + \frac{1}{s_i} = (n_l - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

(Thin lens equation)

Thick Lenses

- Eliminate the intermediate image distance, s_{i1}
- - Rays passing through the focal point are refracted parallel to the optical axis by both surfaces of the lens
 - Rays parallel to the optical axis are refracted through the focal point
 - For a thin lens, we can draw the point where refraction occurs in a common plane
 - For a thick lens, refraction for the two types of rays can occur at different planes

Thick Lenses and Principal Planes

- For a single refracting surface, we measured s_i and s_o with respect to the vertex (ie, the surface of the lens)
- For a thick lens, we need to define s_i and s_o with respect to the principal planes.
- We need to calculate where they are, but it makes the algebra simpler.
- We are not going to derive the following formula...

Thick Lens Calculations

1. Calculate focal length

$$\frac{1}{f} = (n-1) \left[\frac{1}{R_1} - \frac{1}{R_2} + \frac{(n-1)d}{nR_1R_2} \right]$$

2. Calculate positions of principal planes $h_1 = -\frac{f(n-1)d}{nR_2}$

$$h_1 = -\frac{f(n-1)d}{nR_2}$$
$$h_2 = -\frac{f(n-1)d}{nR_1}$$

- 3. Calculate object distance, s_o , measured from principal plane
- Calculate image distance:

20 · 1.5

$$\frac{1}{s_a} + \frac{1}{s_i} = \frac{1}{f}$$

5. Calculate magnification, $m_T = -s_i/s_o$

Find the image distance for an object positioned 30 cm from the vertex of a double convex lens having radii 20 cm and 40 cm, a thickness of 1 cm and n_{i} =1.5 30 cm $=0.5 \left[\frac{1}{20} - \frac{1}{-40} - \frac{0.5 \cdot 1}{1.5 \cdot 20 \cdot 40} \right] \frac{1}{\text{cm}}$ $\frac{1}{n_l} + \frac{(n_l-1)d_l}{n_l}$ $f = 26.8 \,\mathrm{cm}$ $s_o = 30 \text{cm} + 0.22 \text{cm} = 30.22 \text{ cm}$ $\frac{26.8 \cdot 0.5 \cdot 1}{-40 \cdot 1.5}$ cm = 0.22cm $\frac{1}{30.22 \text{cm}} + \frac{1}{s_i} = \frac{1}{26.8 \text{cm}}$ $h_2 = -\frac{26.8 \cdot 0.5 \cdot 1}{20.15}$ cm = -0.44cm

 $s_i = 238 \, \text{cm}$

Thick Lens: example

Compound Thick Lens

Can use two principal points (planes) and effective focal length \boldsymbol{f} to describe propagation of rays through any compound system Note: any ray passing through the first principal plane will emerge at the same height at the second principal plane

For 2 lenses (above):
$$\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2} - \frac{d}{f_1 f_2}$$

$$\frac{H_{11}H_1 = fd/f_2}{H_{22}H_2 = fd/f_1}$$

$$\frac{\overline{H_{11}H_1} = fd/f_2}{\overline{H_{22}H_2} = fd/f_1}$$

Example: page 246

Ray Tracing

- Even the thick lens equation makes approximations and assumptions
 - Spherical lens surfaces
 - Paraxial approximation
 - Alignment with optical axis
- The only physical concepts we applied were
 - Snell's law: $\,n_i \sin \theta_i = n_t \sin \theta_t\,$
 - Law of reflection: $\theta_t = \theta_i$ (in the case of mirrors)
- Can we do better? Can we solve for the paths of the rays exactly?
 - Sure, no problem! But it is a lot of work.
 - Computers are good at doing lots of work (without complaining)

Ray Tracing

- We will still make the assumptions of
 - Paraxial rays
 - Lenses aligned along optical axis
- We will make no assumptions about the lens thickness or positions.

· Geometry:

Ray Tracing

- At a given point along the optical axis, each ray can be uniquely represented by two numbers:
 - Distance from optical axis, y_i
 - Angle with respect to optical axis, $lpha_i$
- If the ray does not encounter an optical element its distance from the optical axis changes according to the transfer equation:

$$y_2 = y_1 + d_1 \alpha_1$$

- This assumes the paraxial approximation $\sin\alpha_1\approx\alpha_1$

Ray Tracing

- At a given point along the optical axis, each ray can be uniquely represented by two numbers:
 - Distance from optical axis, y_i
 - Angle with respect to optical axis, $lpha_i$
- When the ray encounters a surface of a material with a different index of refraction, its angle will change according to the *refraction equation*:

$$n_{t1}\alpha_{t1} = n_{i1}\alpha_{i1} - D_1y_1$$

$$D_1 = \frac{n_{t1} - n_{i1}}{R_1}$$

- Also assumes the paraxial approximation

Ray Tracing

• Geometry used for the refraction equation:

Matrix Treatment: Refraction

At any point of space need 2 parameters to fully specify ray: distance from axis (y) and inclination angle (α) with respect to the optical axis. Optical element changes these ray parameters.

$$x_1 - y_1$$
 $y_{t1} = y_{t1}$

$$n_{t1}\alpha_{t1} = n_{i1}\alpha_{i1} - D_1 y_{i1}$$
$$y_{t1} = 0 \cdot n_{i1}\alpha_{i1} + y_{i1}$$

note: paraxial approximation

Equivalent matrix representation:

$$\begin{pmatrix} n_{i1}\alpha_{i1} \\ y_{i1} \end{pmatrix} = \begin{pmatrix} 1 & -\mathsf{D}_1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} n_{i1}\alpha_{i1} \\ y_{i1} \end{pmatrix}$$

$$\uparrow \qquad \uparrow \equiv \mathsf{r}_{i1} \text{-input ray}$$

Matrix: Transfer Through Space

Transfer:

Tray Tracing Example

• Transfer matrix (distance d in medium n_1):

$$\binom{n_2\alpha_2}{y_2} = \binom{1}{d/n_1} \binom{n_1\alpha_1}{y_1}$$

• Refraction matrix (spherical surface)

$$\binom{n_2 \alpha_2}{y_2} = \binom{1}{0} \frac{-D}{1} \binom{n_1 \alpha_1}{y_1}$$
$$D = \frac{n_2 - n_1}{R}$$

• This example:

$$\vec{y}_o = T_5 R_4 T_3 R_2 T_1 \vec{y}_i$$

Ray Tracing Example

• Initial ray:

$$\vec{y}_o = \begin{pmatrix} \alpha \\ 0 \end{pmatrix}$$

- Final ray should cross the optical axis at a distance s_i from the second vertex.
- Multiply the matrices, solve for s_i ...

Ray Tracing Example

• Use Mathematica...

h(10)= (* Propagateray to the image point *)
yi = tm[si, 1].y4

$$\begin{aligned} & \text{Coultill} & & \left\{ \left\{ \alpha + \frac{(1-n) \, \operatorname{So} \alpha}{r} - \frac{(-1+n) \, \left(\operatorname{So} \alpha + \frac{z \, \operatorname{r} \left(\operatorname{co} \cdot \operatorname{St} \operatorname{deg} \right)}{n} \right)}{r} \right\}, \\ & & \left\{ \operatorname{So} \alpha + \frac{2 \, \operatorname{r} \left(\alpha + \frac{(1-n) \, \operatorname{So} \alpha}{r} \right)}{n} + \operatorname{Si} \left[\alpha + \frac{(1-n) \, \operatorname{So} \alpha}{r} - \frac{(-1+n) \, \left(\operatorname{So} \alpha + \frac{z \, \operatorname{r} \left(\operatorname{co} \cdot \operatorname{St} \operatorname{deg} \right)}{r} \right)}{n} \right) \right\} \right\} \end{aligned}$$

 $\label{eq:condition} \begin{array}{ll} & \text{ if } \mathbb{N}^2 = & \text{ (* The condition for an image is that the ray crosses the optical axis at the image point. So we need to solve for si as a function of so. *) \\ & \text{ solution } * \text{ Solve}[yi[[2]] = 0, \{si\}] \end{array}$

 $\text{Out[13]=} \quad \left\{ \left\{ \text{si} \to \frac{\text{r} \, \left(2\,\, \text{r} + 2\,\, \text{so} - \text{n}\,\, \text{so} \right)}{-2\,\, \text{r} + \text{n}\,\, \text{r} - 2\,\, \text{so} + 2\,\, \text{n}\,\, \text{so}} \right\} \right\}$

Ray Tracing Example

• Use Mathematica...

$$\begin{aligned} &\text{Outifile} &= \left\{ \left\{ \alpha + \frac{(1-n) \, \operatorname{so} \alpha}{r} - \frac{(-1+n) \left(\operatorname{so} \alpha + \frac{2 \, r \left(\operatorname{so} \frac{0.01 \, \operatorname{so} \alpha}{r} \right)}{n} \right)}{r} \right\}, \\ &\left\{ \operatorname{so} \alpha + \frac{2 \, r \left(\alpha + \frac{(3 \, \operatorname{so} 1) \, \operatorname{so} \alpha}{r} \right)}{n} + \operatorname{si} \left[\alpha + \frac{(1-n) \, \operatorname{so} \alpha}{r} - \frac{(-1+n) \left(\operatorname{so} \alpha + \frac{2 \, r \left(\operatorname{so} \frac{0.01 \, \operatorname{so} \alpha}{r} \right)}{n} \right)}{r} \right] \right\} \right\} \end{aligned}$$

$$\label{eq:condition} \begin{split} & \text{in}\{i\}| = \left\{ \text{\star The condition for an image is that the ray crosses the optical axis at the image point. So we need to solve for si as a function of so. *) solution= Solve[yi[[2]] = 0, (si)] \\ & \text{Out[S]:} \quad \left\{ \{\text{si} \to \frac{\text{r} \left(2\text{r} + 2\text{so} - n\text{so}\right)}{2\text{r} + n\text{r} - 2\text{so} + 2\text{n} \text{so}} \right\} \right\} \end{split}$$

Out[13]=
$$\left\{ \left\{ si \rightarrow \frac{r (2r + 2so - nso)}{2r + nso - 2so + 2nso} \right\} \right\}$$

Ray Tracing Example

- Use Mathematica...
 - Object position was at the focal point of the first refracting surface:

$$s_o = \frac{R}{n-1}$$

 $\label{eq:final_loss} $$ \ln[15] = $$ FullSimplif\slashed solution/. $$ so $\to r/(n-1)$ }]$

• It works!