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Physics 42200

Waves & Oscillations

Spring 2016 Semester
Matthew Jones

Lecture 29 – Geometric Optics

Thin Lens Equation

Add these equations and simplify using �� � 1 and � → 0:
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(Thin lens equation)
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Thick Lenses

• Eliminate the intermediate image distance, ���
• Focal points:

– Rays passing through the focal point are refracted parallel 

to the optical axis by both surfaces of the lens

– Rays parallel to the optical axis are refracted through the 

focal point

– For a thin lens, we can draw the point where refraction 

occurs in a common plane

– For a thick lens, refraction for the two types of rays can 

occur at different planes
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First focal point (front focal length)

Second focal point (back focal length)

Primary principal plane

Secondary principal plane

First principal point

Second principal point

Thick Lens: definitions

Nodal points

If media on both sides 

has the same n, then:

N1=H1 and  N2=H2

Fo Fi H1 H2 N1 N2 - cardinal points

Thick Lens: Principal Planes

Principal planes can lie outside the lens:

Thick Lenses and Principal Planes

• For a single refracting surface, we measured ��
and �	 with respect to the vertex (ie, the 
surface of the lens)

• For a thick lens, we need to define �� and �	
with respect to the principal planes.

• We need to calculate where they are, but it 
makes the algebra simpler.

• We are not going to derive the following 
formula…
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Thick Lens: equations
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Thick Lens Calculations

1. Calculate focal length
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2. Calculate positions of principal planes
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3. Calculate object distance, �	, measured from principal plane

4. Calculate image distance:
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5. Calculate magnification, �� = −��/�	

Thick Lens: example
Find the image distance for an object positioned 30 cm from the 

vertex of a double convex lens having radii 20 cm and 40 cm, a 

thickness of 1 cm and nl=1.5
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Compound Thick Lens

Can use two principal points (planes) and effective focal length f

to describe propagation of rays through any compound system

Note: any ray passing through the first principal plane will emerge 

at the same height at the second principal plane

For 2 lenses (above):
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Example: page 246

Ray Tracing

• Even the thick lens equation makes approximations and 

assumptions

– Spherical lens surfaces

– Paraxial approximation

– Alignment with optical axis

• The only physical concepts we applied were

– Snell’s law:  �� sin �� � �� sin ��
– Law of reflection: �� � �� (in the case of mirrors)

• Can we do better?  Can we solve for the paths of the rays 

exactly?

– Sure, no problem!  But it is a lot of work.

– Computers are good at doing lots of work (without complaining)

Ray Tracing

• We will still make the assumptions of

– Paraxial rays

– Lenses aligned along optical axis

• We will make no assumptions about the lens 

thickness or positions.

• Geometry:
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Ray Tracing

• At a given point along the optical axis, each ray can 

be uniquely represented by two numbers:

– Distance from optical axis, ��
– Angle with respect to optical axis, ��

• If the ray does not encounter an optical element its 

distance from the optical axis changes according to 

the transfer equation:
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– This assumes the paraxial approximation sin�� ≈ ��
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Ray Tracing

• At a given point along the optical axis, each ray can 

be uniquely represented by two numbers:

– Distance from optical axis, ��
– Angle with respect to optical axis, ��

• When the ray encounters a surface of a material with 

a different index of refraction, its angle will change 

according to the refraction equation:
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– Also assumes the paraxial approximation

Ray Tracing

• Geometry used for the refraction equation:
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Matrix Treatment: Refraction

note: paraxial approximation

At any point of space need 2 parameters to fully specify ray:

distance from axis (y) and inclination angle (α) with respect to 

the optical axis. Optical element changes these ray parameters.
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≡ rt1 - output ray

≡ ri1 - input ray

≡ R1 - refraction matrix
111 it rRr =

Matrix: Transfer Through Space
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presentation:

≡ ri2 - output ray

≡ rt1 - input ray

≡ T21 - transfer matrix

1212 ti rTr =

Transfer:

yt1

yi2

112122 it rRTRr =

System Matrix

yt1
yi1

yi2 yi2

ri1 rt1 ri2 rt2

R1 T21

ri3 rt3

R3T32

111 it rRr =
11211212 iti rRTrTr ==

Thick lens ray transfer:

1212
RTR=ASystem matrix:

12 it rr A=

Can treat any system with single system matrix
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1212
RTR=A









=

10

1 D-
R









=

1

01

nd
TReminder:










++

++
≡

















DdCbDcCa

BdAbBcAa

dc

ba

DC

BA

























=

10

1

1

01

10

1
12

D-D-

ll nd
A

yt1
yi1

yi2 yi2

nl

d
Thick Lens Matrix



















−

+−

=

l

l

l

l

l

l

l

l

n

d

n

d

n

d

n

d

1

21

21

2

1

1

D

DD
-D-D-   

D

A

system matrix of thick lens

For thin lens dl=0
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Matrix Treatment: example
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(Detailed example with thick lenses and numbers: page 250)
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Tray Tracing Example

• Transfer matrix (distance � in medium ��):
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• Refraction matrix (spherical surface)
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• This example:
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Ray Tracing Example

• Initial ray:

�!	 �
�
0

• Final ray should cross the optical axis at a 

distance �� from the second vertex.

• Multiply the matrices, solve for ��…
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Ray Tracing Example

• Use Mathematica…
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Ray Tracing Example

• Use Mathematica…

Ray Tracing Example

• Use Mathematica…

– Object position was at the focal point of the first 

refracting surface:
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• It works!


