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Thin Lens Equation

Add these equations and simplify using �� � 1 and � → 0:
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Thick Lenses

• Eliminate the intermediate image distance, ���

• Focal points:

– Rays passing through the focal point are refracted parallel 

to the optical axis by both surfaces of the lens

– Rays parallel to the optical axis are refracted through the 

focal point

– For a thin lens, we can draw the point where refraction 

occurs in a common plane

– For a thick lens, refraction for the two types of rays can 

occur at different planes



First focal point (front focal length)

Second focal point (back focal length)

Primary principal plane

Secondary principal plane

First principal point

Second principal point

Thick Lens: definitions

Nodal points

If media on both sides 

has the same n, then:

N1=H1 and  N2=H2

Fo Fi H1 H2 N1 N2 - cardinal points



Thick Lens: Principal Planes

Principal planes can lie outside the lens:



Thick Lenses and Principal Planes

• For a single refracting surface, we measured ��
and �	 with respect to the vertex (ie, the 
surface of the lens)

• For a thick lens, we need to define �� and �	
with respect to the principal planes.

• We need to calculate where they are, but it 
makes the algebra simpler.

• We are not going to derive the following 
formula…



Thick Lens: equations
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Thick Lens Calculations

1. Calculate focal length
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2. Calculate positions of principal planes

ℎ� = −
� � − 1 �

���

ℎ� = −
� � − 1 �

���

3. Calculate object distance, �	, measured from principal plane

4. Calculate image distance:
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5. Calculate magnification, �� = −��/�	



Thick Lens: example
Find the image distance for an object positioned 30 cm from the 

vertex of a double convex lens having radii 20 cm and 40 cm, a 

thickness of 1 cm and nl=1.5

cm 30.22cm22.0cm30 =+=os
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Compound Thick Lens

Can use two principal points (planes) and effective focal length f

to describe propagation of rays through any compound system

Note: any ray passing through the first principal plane will emerge 

at the same height at the second principal plane

For 2 lenses (above):
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Example: page 246



Ray Tracing

• Even the thick lens equation makes approximations and 

assumptions

– Spherical lens surfaces

– Paraxial approximation

– Alignment with optical axis

• The only physical concepts we applied were

– Snell’s law:  �� sin �� = �� sin ��
– Law of reflection: �� = �� (in the case of mirrors)

• Can we do better?  Can we solve for the paths of the rays 

exactly?

– Sure, no problem!  But it is a lot of work.

– Computers are good at doing lots of work (without complaining)



Ray Tracing

• We will still make the assumptions of

– Paraxial rays

– Lenses aligned along optical axis

• We will make no assumptions about the lens 

thickness or positions.

• Geometry:



Ray Tracing

• At a given point along the optical axis, each ray can 

be uniquely represented by two numbers:

– Distance from optical axis, ��
– Angle with respect to optical axis, ��

• If the ray does not encounter an optical element its 

distance from the optical axis changes according to 

the transfer equation:

��	 = �� + ����

– This assumes the paraxial approximation sin �� ≈ ��
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Ray Tracing

• At a given point along the optical axis, each ray can 

be uniquely represented by two numbers:

– Distance from optical axis, ��
– Angle with respect to optical axis, ��

• When the ray encounters a surface of a material with 

a different index of refraction, its angle will change 

according to the refraction equation:
������ = ������ − ����
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– Also assumes the paraxial approximation



Ray Tracing

• Geometry used for the refraction equation:
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Matrix Treatment: Refraction

note: paraxial approximation

At any point of space need 2 parameters to fully specify ray:

distance from axis (y) and inclination angle (α) with respect to 

the optical axis. Optical element changes these ray parameters.
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Matrix: Transfer Through Space
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presentation:

≡ ri2 - output ray

≡ rt1 - input ray

≡ T21 - transfer matrix

1212 ti rTr =

Transfer:
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112122 it rRTRr =

System Matrix
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ri1 rt1 ri2 rt2

R1 T21
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R3T32
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Thick lens ray transfer:
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Can treat any system with single system matrix



1212
RTR=A
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Matrix Treatment: example
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(Detailed example with thick lenses and numbers: page 250)
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Tray Tracing Example

• Transfer matrix (distance � in medium ��):
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• Refraction matrix (spherical surface)
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Ray Tracing Example

• Initial ray:

�!	 =
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• Final ray should cross the optical axis at a 

distance �� from the second vertex.

• Multiply the matrices, solve for ��…
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Ray Tracing Example

• Use Mathematica…



Ray Tracing Example

• Use Mathematica…



Ray Tracing Example

• Use Mathematica…

– Object position was at the focal point of the first 

refracting surface:

�	 =
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� − 1

• It works!


