

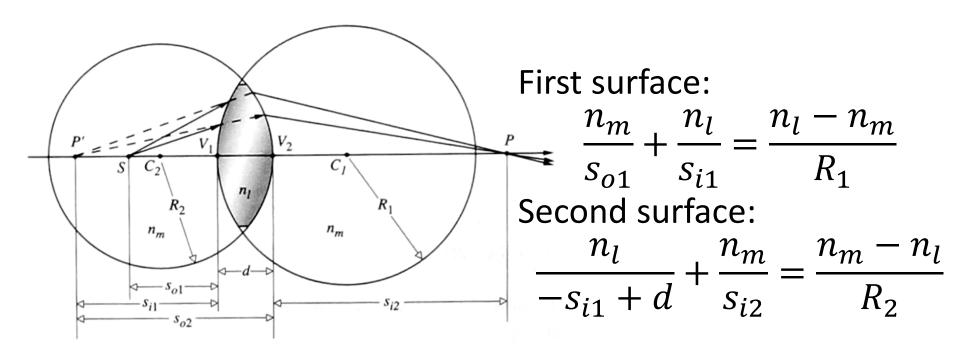
Physics 42200 Waves & Oscillations

Lecture 29 – Geometric Optics

Spring 2016 Semester

Matthew Jones

Thin Lens Equation



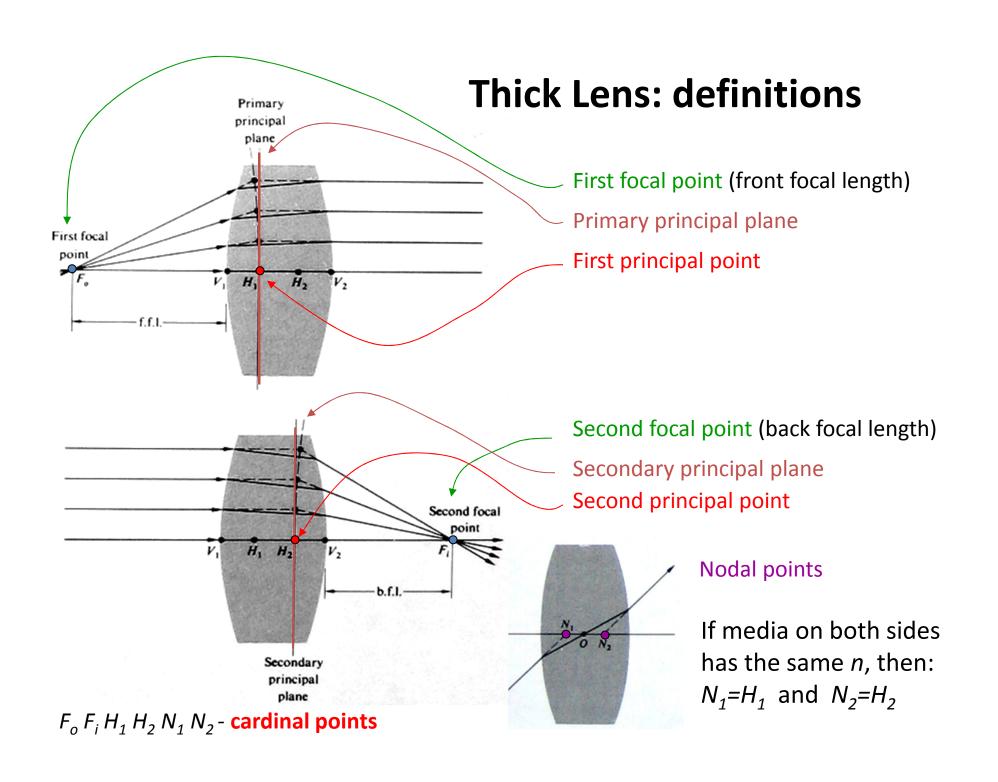
Add these equations and simplify using $n_m = 1$ and $d \to 0$:

$$\frac{1}{s_o} + \frac{1}{s_i} = (n_l - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

(Thin lens equation)

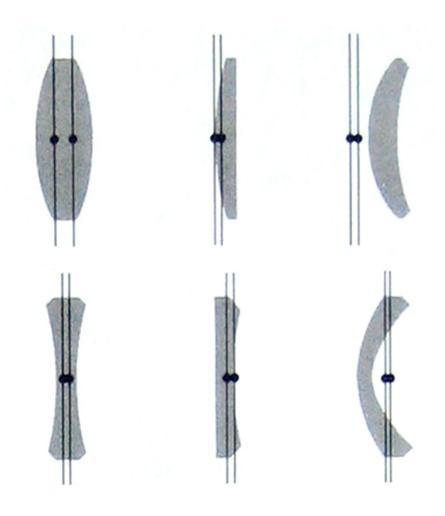
Thick Lenses

- Eliminate the intermediate image distance, s_{i1}
- Focal points:
 - Rays passing through the focal point are refracted parallel to the optical axis by both surfaces of the lens
 - Rays parallel to the optical axis are refracted through the focal point
 - For a thin lens, we can draw the point where refraction occurs in a common plane
 - For a thick lens, refraction for the two types of rays can occur at different planes



Thick Lens: Principal Planes

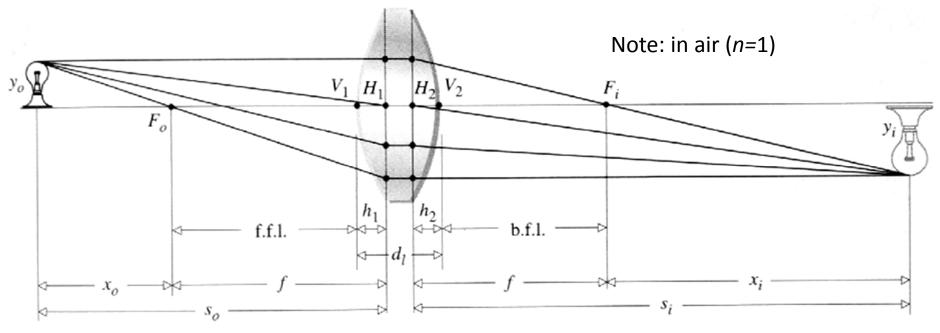
Principal planes can lie outside the lens:



Thick Lenses and Principal Planes

- For a single refracting surface, we measured s_i and s_o with respect to the vertex (ie, the surface of the lens)
- For a thick lens, we need to define s_i and s_o with respect to the principal planes.
- We need to calculate where they are, but it makes the algebra simpler.
- We are not going to derive the following formula...

Thick Lens: equations



$$\frac{1}{s_o} + \frac{1}{s_i} = \frac{1}{f}$$

$$x_o x_i = f^2$$
effective focal length:
$$\frac{1}{f} = (n_l - 1) \left[\frac{1}{R_1} - \frac{1}{R_2} + \frac{(n_l - 1)d_l}{n_l R_1 R_2} \right]$$

Principal planes:

$$h_1 = -\frac{f(n_l - 1)d_l}{n_l R_2}$$
 $h_2 = -\frac{f(n_l - 1)d_l}{n_l R_1}$

Magnification:

$$M_T \equiv \frac{y_i}{y_o} = -\frac{s_i}{s_o} = -\frac{x_i}{f} = -\frac{f}{x_o}$$

Thick Lens Calculations

Calculate focal length

$$\frac{1}{f} = (n-1) \left[\frac{1}{R_1} - \frac{1}{R_2} + \frac{(n-1)d}{nR_1R_2} \right]$$

2. Calculate positions of principal planes

$$h_1 = -\frac{f(n-1)d}{nR_2}$$

$$h_2 = -\frac{f(n-1)d}{nR_1}$$

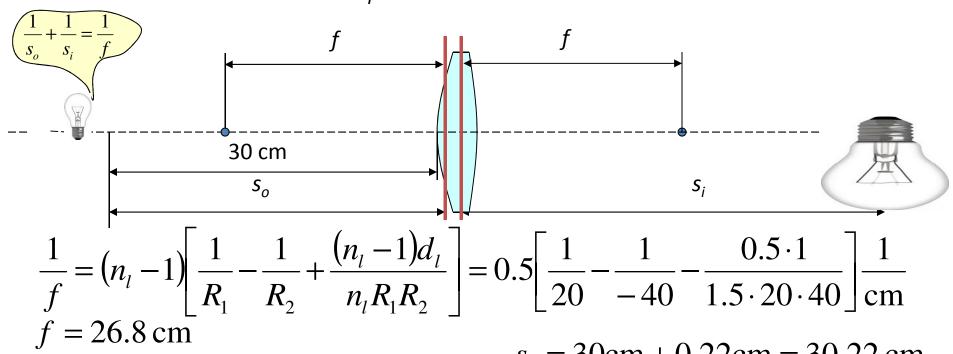
- 3. Calculate object distance, s_o , measured from principal plane
- 4. Calculate image distance:

$$\frac{1}{s_o} + \frac{1}{s_i} = \frac{1}{f}$$

5. Calculate magnification, $m_T = -s_i/s_o$

Thick Lens: example

Find the image distance for an object positioned 30 cm from the vertex of a double convex lens having radii 20 cm and 40 cm, a thickness of 1 cm and n_l =1.5



$$h_1 = -\frac{26.8 \cdot 0.5 \cdot 1}{-40 \cdot 1.5} \text{cm} = 0.22 \text{cm}$$

$$h_2 = -\frac{26.8 \cdot 0.5 \cdot 1}{20 \cdot 1.5} \text{cm} = -0.44 \text{cm}$$

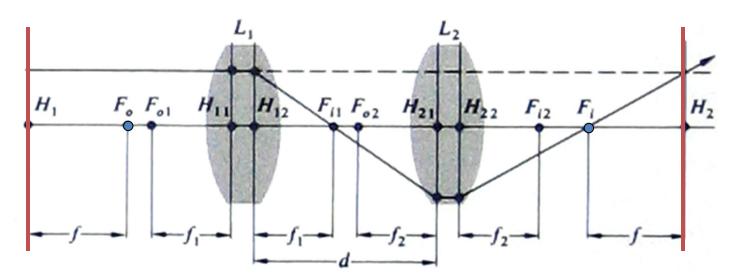
$$h_2 = -\frac{26.8 \cdot 0.5 \cdot 1}{20 \cdot 1.5} \text{cm} = -0.44 \text{cm}$$

$$s_o = 30 \text{cm} + 0.22 \text{cm} = 30.22 \text{ cm}$$

$$\frac{1}{30.22 \text{cm}} + \frac{1}{s_i} = \frac{1}{26.8 \text{cm}}$$

$$s_i = 238 \,\mathrm{cm}$$

Compound Thick Lens



Can use two principal points (planes) and effective focal length f to describe propagation of rays through any compound system

Note: any ray passing through the first principal plane will emerge at the same height at the second principal plane

For 2 lenses (above):

$$\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2} - \frac{d}{f_1 f_2}$$

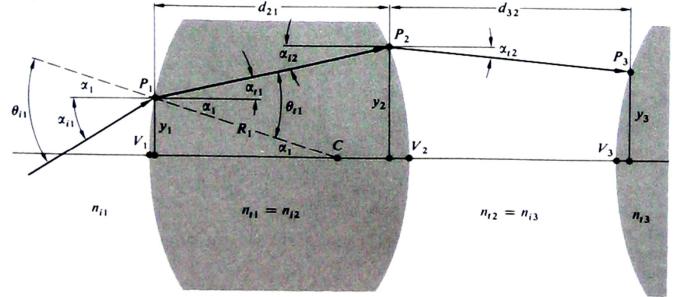
$$\frac{\overline{H_{11} H_1}}{H_{22} H_2} = \frac{fd}{f_1}$$

$$\frac{\overline{H_{11}H_1} = fd/f_2}{\overline{H_{22}H_2} = fd/f_1}$$

Example: page 246

- Even the thick lens equation makes approximations and assumptions
 - Spherical lens surfaces
 - Paraxial approximation
 - Alignment with optical axis
- The only physical concepts we applied were
 - Snell's law: $n_i \sin \theta_i = n_t \sin \theta_t$
 - Law of reflection: $\theta_t = \theta_i$ (in the case of mirrors)
- Can we do better? Can we solve for the paths of the rays exactly?
 - Sure, no problem! But it is a lot of work.
 - Computers are good at doing lots of work (without complaining)

- We will still make the assumptions of
 - Paraxial rays
 - Lenses aligned along optical axis
- We will make no assumptions about the lens thickness or positions.
- Geometry:



- At a given point along the optical axis, each ray can be uniquely represented by two numbers:
 - Distance from optical axis, y_i
 - Angle with respect to optical axis, α_i
- If the ray does not encounter an optical element its distance from the optical axis changes according to the transfer equation:

$$y_2 = y_1 + d_1 \alpha_1$$

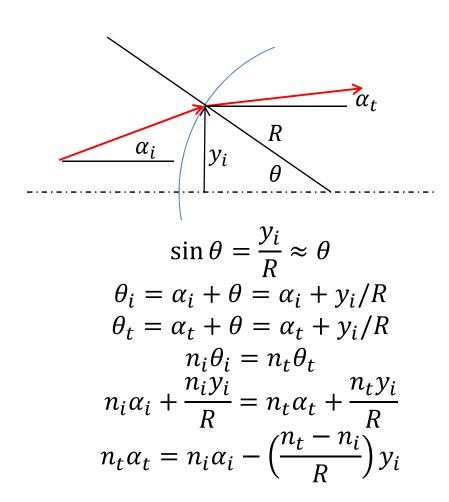
– This assumes the paraxial approximation $\sin \alpha_1 \approx \alpha_1$

- At a given point along the optical axis, each ray can be uniquely represented by two numbers:
 - Distance from optical axis, y_i
 - Angle with respect to optical axis, α_i
- When the ray encounters a surface of a material with a different index of refraction, its angle will change according to the refraction equation:

$$n_{t1}\alpha_{t1} = n_{i1}\alpha_{i1} - D_1 y_1$$
$$D_1 = \frac{n_{t1} - n_{i1}}{R_1}$$

Also assumes the paraxial approximation

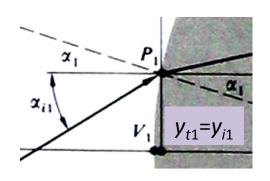
• Geometry used for the refraction equation:



Matrix Treatment: Refraction

At any point of space need 2 parameters to fully specify ray: distance from axis (y) and inclination angle (α) with respect to the optical axis. Optical element changes these ray parameters.

Refraction:



$$n_{t1}\alpha_{t1} = n_{i1}\alpha_{i1} - D_1 y_{i1}$$
$$y_{t1} = 0 \cdot n_{i1}\alpha_{i1} + y_{i1}$$

note: paraxial approximation

Reminder:

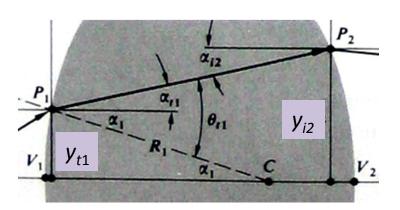
$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} \alpha \\ y \end{pmatrix} \equiv \begin{pmatrix} A\alpha + By \\ C\alpha + Dy \end{pmatrix}$$

$$\mathbf{r}_{t1} = \mathbf{R}_1 \mathbf{r}_{i1}$$

$$\begin{pmatrix} n_{t1} \boldsymbol{\alpha}_{t1} \\ y_{t1} \end{pmatrix} = \begin{pmatrix} 1 & -D_1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} n_{i1} \boldsymbol{\alpha}_{i1} \\ y_{i1} \end{pmatrix}$$

Matrix: Transfer Through Space

Transfer:



$$n_{i2}\alpha_{i2} = n_{t1}\alpha_{t1} + 0 \cdot y_{t1}$$
$$y_{i2} = d_{21} \cdot \alpha_{t1} + y_{t1}$$

$$\begin{pmatrix} n_{i2}\alpha_{i2} \\ y_{i2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ d_{21}/n_{t1} & 1 \end{pmatrix} \begin{pmatrix} n_{t1}\alpha_{t1} \\ y_{t1} \end{pmatrix}$$

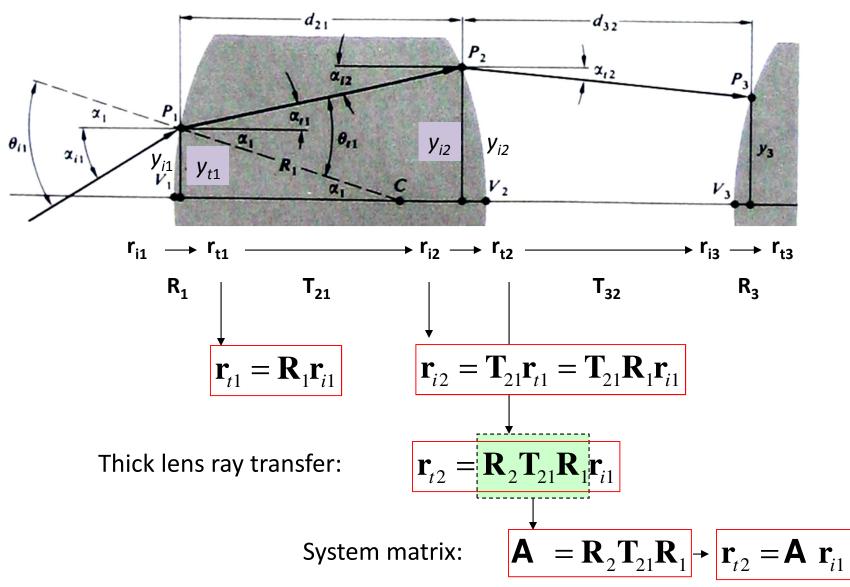
$$\mathbf{r}_{i2} = \mathbf{T}_{21}\mathbf{r}_{t1}$$

$$\uparrow \equiv \mathbf{r_{t1}} - \text{input ray}$$

$$\equiv \mathbf{T_{21}} - \textbf{transfer matrix}$$

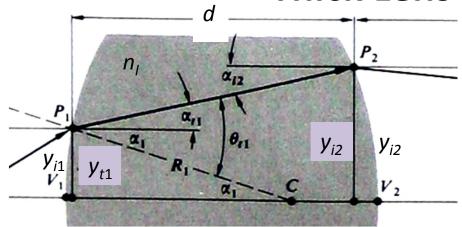
$$\equiv \mathbf{r_{i2}} - \text{output ray}$$

System Matrix



Can treat any system with single system matrix

Thick Lens Matrix



Reminder:

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} Aa + Bc & Ab + Bd \\ Ca + Dc & Cb + Dd \end{pmatrix}$$

$$\mathbf{A} = \begin{pmatrix} 1 & -\mathbf{D}_2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ d_l/n_l & 1 \end{pmatrix} \begin{pmatrix} 1 & -\mathbf{D}_1 \\ 0 & 1 \end{pmatrix}$$

$$\mathbf{A} = \begin{pmatrix} 1 - \frac{D_2 d_l}{n_l} & -D_1 - D_2 - + \frac{D_1 D_2 d_l}{n_l} \\ \frac{d_l}{n_l} & 1 - \frac{D_1 d_l}{n_l} \end{pmatrix}$$

$$\mathbf{A} = \mathbf{R}_2 \mathbf{T}_{21} \mathbf{R}_1$$

$$\mathbf{R} = \begin{pmatrix} 1 & -\mathsf{D} \\ 0 & 1 \end{pmatrix}$$

$$\mathbf{T} = \begin{pmatrix} 1 & 0 \\ d/n & 1 \end{pmatrix}$$

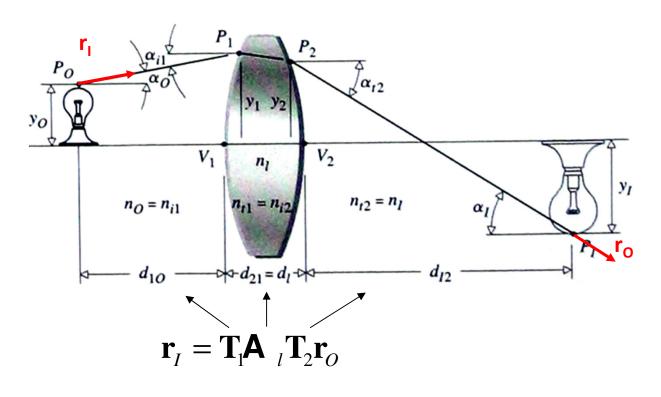
$$\frac{1}{f} = (n_l - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

system matrix of thick lens

For thin lens $d_{l}=0$

$$\mathbf{A} = \begin{pmatrix} 1 & -1/f \\ 0 & 1 \end{pmatrix}$$

Matrix Treatment: example



$$\begin{pmatrix} n_I \alpha_I \\ y_I \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ d_{I2}/n_I & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ d_{10}/n_O & 1 \end{pmatrix} \begin{pmatrix} n_O \alpha_O \\ y_O \end{pmatrix}$$

(Detailed example with thick lenses and numbers: page 250)

Mirror Matrix

Sign convention: R > 0

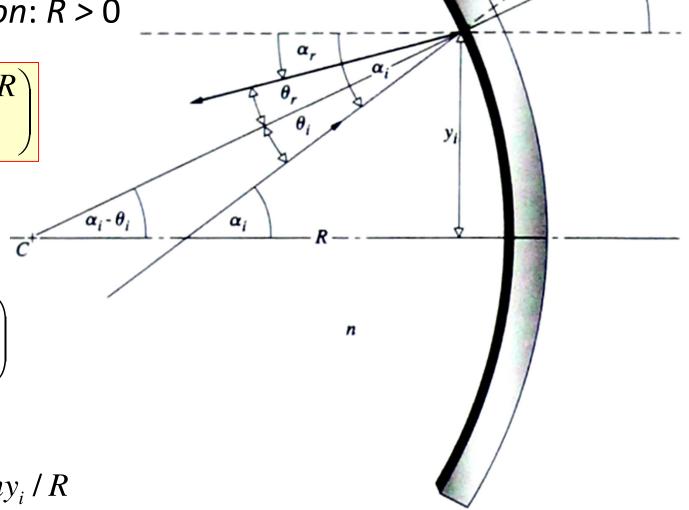
$$\mathbf{M} = \begin{pmatrix} -1 & 2n/R \\ 0 & 1 \end{pmatrix}$$

$$\binom{n\alpha_r}{y_r} = \mathbf{M} \binom{n\alpha_i}{y_i}$$

$$y_r = y_i$$

$$n\alpha_r = -n\alpha_i + 2ny_i / R$$

$$\alpha_r = -\alpha_i + 2y_i / R$$



• Transfer matrix (distance d in medium n_1):

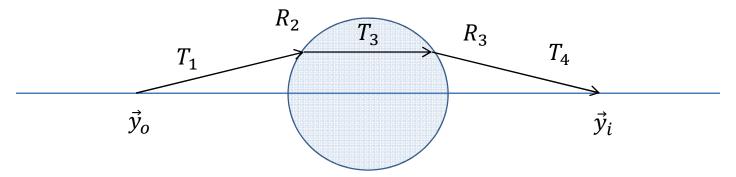
$$\binom{n_2\alpha_2}{y_2} = \binom{1}{d/n_1} \quad \binom{n_1\alpha_1}{y_1}$$

Refraction matrix (spherical surface)

$$\binom{n_2 \alpha_2}{y_2} = \binom{1}{0} - D \choose 0 \qquad 1 \choose y_1} \binom{n_1 \alpha_1}{y_1}$$
$$D = \frac{n_2 - n_1}{R}$$

This example:

$$\vec{y}_o = T_5 R_4 T_3 R_2 T_1 \vec{y}_i$$



Initial ray:

$$\vec{y}_o = \begin{pmatrix} \alpha \\ 0 \end{pmatrix}$$

- Final ray should cross the optical axis at a distance s_i from the second vertex.
- Multiply the matrices, solve for s_i ...

Use Mathematica...

In[10]:= (* Propagateray to the image point *)
$$yi = tm[si, 1].y4$$
Out[10]:=
$$\left\{ \left\{ \alpha + \frac{(1-n) \cos \alpha}{r} - \frac{(-1+n) \left(\cos \alpha + \frac{2 r \left(\alpha + \frac{(1-n) \cos \alpha}{r} \right)}{n} \right)}{r} \right\},$$

$$\left\{ \sin \alpha + \frac{2 r \left(\alpha + \frac{(1-n) \cos \alpha}{r} \right)}{n} + \sin \left(\alpha + \frac{(1-n) \cos \alpha}{r} - \frac{(-1+n) \left(\cos \alpha + \frac{2 r \left(\alpha + \frac{(1-n) \cos \alpha}{r} \right)}{n} \right)}{r} \right) \right\} \right\}$$

in[13]:= (* The condition for an image is that the ray crosses the optical axis
 at the image point. So we need to solve for si as a function of so. *)
 solution = Solve[yi[[2]] == 0, {si}]

Out[13]=
$$\left\{ \left\{ si \rightarrow \frac{r (2r + 2so - nso)}{-2r + nr - 2so + 2nso} \right\} \right\}$$

Use Mathematica...

In[10]:= (* Propagateray to the image point *)
$$yi = tm[si, 1].y4$$
Out[10]:=
$$\left\{ \left\{ \alpha + \frac{(1-n) \cos \alpha}{r} - \frac{(-1+n) \left(\cos \alpha + \frac{2 r \left(\alpha + \frac{(1-n) \cos \alpha}{r} \right)}{n} \right)}{r} \right\},$$

$$\left\{ \sin \alpha + \frac{2 r \left(\alpha + \frac{(1-n) \cos \alpha}{r} \right)}{n} + \sin \left(\alpha + \frac{(1-n) \cos \alpha}{r} - \frac{(-1+n) \left(\cos \alpha + \frac{2 r \left(\alpha + \frac{(1-n) \cos \alpha}{r} \right)}{n} \right)}{r} \right) \right\} \right\}$$

in[13]:= (* The condition for an image is that the ray crosses the optical axis
 at the image point. So we need to solve for si as a function of so. *)
 solution = Solve[yi[[2]] == 0, {si}]

Out[13]=
$$\left\{ \left\{ si \rightarrow \frac{r (2r + 2so - nso)}{-2r + nr - 2so + 2nso} \right\} \right\}$$

- Use Mathematica...
 - Object position was at the focal point of the first refracting surface:

$$s_o = \frac{R}{n-1}$$

```
In[15]:= FullSimplif\frac{r}{n-1} Solution/. {so \rightarrow r / (n - 1) }]
Out[15]:= \left\{\frac{r}{-1+n}\right\}
```

• It works!