

Physics 42200 Waves & Oscillations

Lecture 28 – Geometric Optics

Spring 2016 Semester

Matthew Jones

Sign Conventions

$$\frac{n_1}{s_o} + \frac{n_2}{s_i} = \frac{n_2 - n_1}{R}$$

Convex surface:

- $-s_o$ is positive for objects on the incident-light side
- $-s_i$ is positive for images on the refracted-light side
- -R is positive if C is on the refracted-light side

Sign Conventions

$$\frac{n_1}{s_o} + \frac{n_2}{s_i} = \frac{n_2 - n_1}{R}$$
(same formula)

Concave surface:

- $-s_o$ is positive for objects on the incident-light side
- $-s_i$ is negative for images on the incident-light side
- -R is negative if C is on the incident-light side

Magnification

Using these sign conventions, the magnification is

$$m = -\frac{n_1 s_i}{n_2 s_o}$$

- Ratio of image height to object height
- Sign indicates whether the image is inverted

Thin Lenses

- The previous examples were for one spherical surface.
- Two spherical surfaces make a thin lens

Thin Lens Classification

- A flat surface corresponds to $R \to \infty$
- All possible combinations of two surfaces:

Thin Lens Equation

Add these equations and simplify using $n_m = 1$ and $d \to 0$:

$$\frac{1}{s_o} + \frac{1}{s_i} = (n_l - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

(Thin lens equation)

Gaussian Lens Formula

 Recall that the focal point was the place to which parallel rays were made to converge

- Parallel rays from the object correspond to $s_o \to \infty$ and $s_i \to f$: $\frac{1}{f} = (n_l 1) \left(\frac{1}{R_1} \frac{1}{R_2} \right)$
- This lens equation: $\frac{1}{s_i} + \frac{1}{s_o} = (n_l 1) \left(\frac{1}{R_1} \frac{1}{R_2} \right) = \frac{1}{f}$

Gaussian Lens Formula

Gaussian lens formula:

$$\frac{1}{s_o} + \frac{1}{s_i} = \frac{1}{f}$$

Newtonian form:

$$x_o x_i = f^2$$

(follows from the Gaussian formula after about 5 lines of algebra)

All you need to know about a lens is its focal length

Example

- What is the focal length of this lens?
 - Let s_o → ∞, then s_i → f

$$\frac{1}{f} = (n_l - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

— The flat surface has $R_1 \rightarrow \infty$ and we know that $R_2 = -50$ mm

$$\frac{1}{f} = (1.5 - 1) \left(\frac{1}{\infty} - \frac{1}{-50 \text{ mm}} \right) = \frac{1}{100 \text{ mm}}$$

$$f = 100 mm$$

Example

- Objects are placed at $s_i = 600 \text{ mm}, 200 \text{ mm}, 150 \text{ mm}, 100 \text{ mm}, 80 \text{ mm}$
- Where are their images?

$$\frac{1}{s_o} + \frac{1}{s_i} = \frac{1}{f} \implies s_i = \frac{s_o f}{s_o - f}$$

 $s_i = 120 \text{ mm}, 200 \text{ mm}, 300 \text{ mm}, \infty, -400 \text{ mm}$

Focal Plane

Thin lens + paraxial approximation:

- All rays that pass through the center, O, do not bend
- All rays converge to points in the focal plane (back focal plane)
- $-F_o$ lies in the front focal plane

Imaging with a Thin Lens

- For each point on the object we can draw three rays:
 - 1. A ray straight through the center of the lens
 - A ray parallel to the central axis, then through the image focal point
 - A ray through the object focal point, then parallel to the central axis.

Converging Lens: Principal Rays

- 1) Rays parallel to principal axis pass through focal point F_i .
- 2) Rays through center of lens are not refracted.
- 3) Rays through F_o emerge parallel to principal axis. In this case image is real, inverted and enlarged

Assumptions:

- Monochromatic light
- Thin lens
- Paraxial rays (near the optical axis)

Since n is function of λ , in reality each color has different focal point: chromatic aberration. Contrast to mirrors: angle of incidence/reflection not a function of λ

Diverging Lens: Forming Image

- 1) Rays parallel to principal axis appear to come from focal point F_i .
- 2) Rays through center of lens are not refracted.
- 3) Rays toward F_o emerge parallel to principal axis.

Image is virtual, upright and reduced.

Converging Lens: Examples

This could be used in a camera. Big object on small film

This could be used as a projector. Small slide(object) on big screen (image)

This is a magnifying glass

Lens Magnification

Green and blue triangles are similar:

Example: f=10 cm, $s_o=15$ cm

$$\frac{1}{15cm} + \frac{1}{s_i} = \frac{1}{10cm}$$
 $\Rightarrow s_i = 30 \text{ cm}$

Magnification equation:

$$M_T \equiv \frac{y_i}{y_o} = -\frac{S_i}{S_o}$$

$$T_T = \text{transverse}$$

$$M_T = -\frac{30cm}{15cm} = -2$$

Longitudinal Magnification

The 3D image of the horse is distorted:

- transverse magnification changes along optical axis
- longitudinal magnification is not linear

Longitudinal magnification:

$$M_{L} \equiv \frac{dx_{i}}{dx_{o}} = -\frac{f^{2}}{x_{o}^{2}} = -M_{T}^{2}$$

Negative: a horse looking towards the lens forms an image that looks away from the lens

$$x_o x_i = f^2$$
 $\to x_i = f^2 / x_o \to \frac{dx_i}{dx_o} = \frac{d}{dx_o} (f^2 / x_o) = -(f^2 / x_o^2)$

Two Lens Systems

- Calculate s_{i1} using $\frac{1}{f_1} = \frac{1}{s_{o1}} + \frac{1}{s_{i1}}$
- Ignore the first lens, treat s_{i1} as the object distance for the second lens. Calculate s_{i2} using

$$\frac{1}{f_2} = \frac{1}{s_{o2}} + \frac{1}{s_{i2}}$$

• Overall magnification: $M=m_1m_2=\left(-\frac{s_{i1}}{s_{o1}}\right)\left(-\frac{s_{i2}}{s_{o2}}\right)$

Example: Two Lens System

An object is placed in front of two thin symmetrical coaxial lenses (lens 1 & lens 2) with focal lengths f_1 =+24 cm & f_2 =+9.0 cm, with a lens separation of L=10.0 cm. The object is 6.0 cm from lens 1. Where is the image of the object?

Example: Two Lens System

An object is placed in front of two thin symmetrical coaxial lenses (lens 1 & lens 2) with focal lengths f_1 =+24 cm & f_2 =+9.0 cm, with a lens separation of L=10.0 cm. The object is 6.0 cm from lens 1. Where is the image of the object?

(not really to scale...)

Example: Two Lens System

An object is placed in front of two thin symmetrical coaxial lenses (lens 1 & lens 2) with focal lengths f_1 =+24 cm & f_2 =+9.0 cm, with a lens separation of L=10.0 cm. The object is 6.0 cm from lens 1. Where is the image of the object?

Lens 1:
$$\frac{1}{f_1} = \frac{1}{S_{01}} + \frac{1}{S_{i1}} \longrightarrow S_{i1} = -8 \ cm$$

Image 1 is virtual.

Lens 2: Treat image 1 as O_2 for lens 2. O_2 is outside the focal point of lens 2. So, image 2 will be real & inverted on the other side of lens 2.

$$s_{o2} = L - s_{i1}$$
 $s_{i2} = 18.0 cm$ $\frac{1}{f_2} = \frac{1}{s_{o2}} + \frac{1}{s_{i2}}$ Image 2 is real.

Magnification: $M_T = \left(-\frac{-8 cm}{6 cm}\right) \left(-\frac{18 cm}{18 cm}\right) = -1.33$