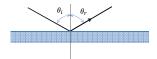


Physics 42200

Waves & Oscillations

Lecture 27 – Propagation of Light Hecht, chapter 5


Spring 2016 Semester

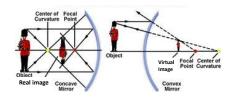
Geometric Optics

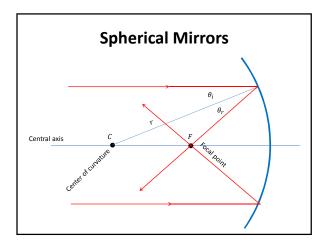
- Typical problems in geometric optics:
 - Given an optical system, what are the properties of the image that is formed (if any)?
 - What configuration of optical elements (if any) will produce an image with certain desired characteristics?
- No new physical principles: the laws of reflection and refraction are all we will use
- We need a method for analyzing these problems in a systematic an organized way

The Law of Reflection

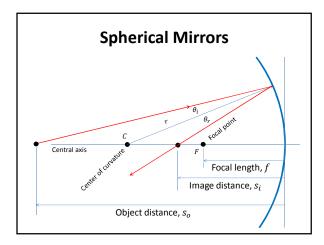
 $\theta_{incidence} = \theta_{reflection}$

Reflection from curved surfaces

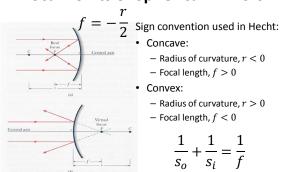

• Imagine a plane that is tangent to the surface at the point where the incident light hits



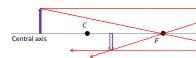
- In general, finding the tangent plane might not be easy
 - Computers are pretty good at parameterizing surfaces in terms of polynomials and then it's easy
 - Ray tracing programs do this
- We might only have to do it for a spherical surface which will be simple.


Types of Images

- Real Image: light emanates from points on the image
- Virtual Image: light appears to emanate from the image



2		
7	_	
	_	



Sign Conventions

- Be careful about sign conventions!
- There is nothing physical about making r>0 for convex mirrors and r<0 for concave mirrors.
- Different books use different conventions.
- Make sure you know what sign conventions are used in any formulas you make use of.
- This is also true in many other fields of physics.

Properties of Images

- 1. Ray parallel to central axis reflected through focal point
- 2. Ray through focal point reflected parallel to central axis.

Reflected rays pass through the image: it is a *real image*

The image is inverted.

Properties of Images

Central axis

Object distance, $s_o > 0$ Focal length, f < 0Image distance, $s_i < 0$

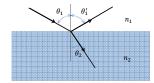
Reflected rays do not pass through the image, even though they might appear to... the image is *virtual*.

Propagation Of Light

• Speed of light in vacuum:

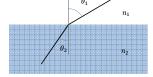
$$c = 2.998 \times 10^8 \ m/s$$

- In transparent materials, the speed of light is slower
- The "index of refraction" is the ratio:


$$n = \frac{c}{v}$$

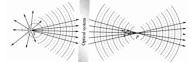
11	_	С
ν	_	n

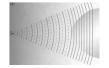
medium	index of refraction n
vacuum	exactly 1
air (STP)	1.00029
H ₂ O (20 ⁰ C)	1.33
crown glass	1.52
diamond	2.42


Geometric Optics

- When the wavelength is much smaller than the size of any objects with which it interacts.
- Two effects:
 - Reflection from a surface $\theta_1'=~\theta_1$
 - Refraction through an interface between two materials

Propagation in Transparent Media

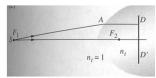

- Fermat's principle: *light travels between two points* such that the time of travel is a minimum.
 - Does not refer to the wave nature of light
- Two points in the same media: straight line
- Two points in different media: not a straight line



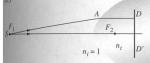
 $n_1\sin\theta_1=n_2\sin\theta_2$ (Snell's Law)

Lenses

• Insert a transparent object with n>1 that is thicker in the middle and thinner at the edges



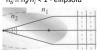
Spherical waves can be turned into plane waves.


Aspherical Surfaces

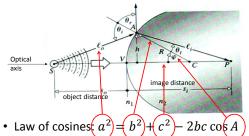
• What shape of surface will change spherical waves to plane waves?

• Time to travel from S to plane DD' must be equal for all points A on the surface.

Aspherical Surfaces


$$\frac{\overline{F_1A}}{v_i} + \frac{\overline{AD}}{v_t} = \frac{n_i(\overline{F_1A})}{c} + \frac{n_t(\overline{AD})}{c}$$

$$\overline{F_1 A} + \frac{n_t}{n_i} \overline{AD} = \text{constant}$$


- This is the equation for a hyperbola if $n_t/n_i>1$ and the equation for an ellipse if $n_t/n_i < 1$.

$$n_{ti} \equiv n_t/n_i < 1$$
 - ellipsoid

Spherical Lens

 $\ell_o = \sqrt{R^2 + (s_o + R)^2 - 2R(s_o + R)\cos\varphi}$ $\ell_i = \sqrt{R^2 + (s_i - R)^2 + 2R(s_i - R)\cos\varphi}$

Spherical Lens

Fermat's principle: Light will travel on paths for which the optical path length is stationary (ie, minimal, but possibly maximal)

$$\begin{split} \ell_o &= \sqrt{R^2 + (s_o + R)^2 - 2R(s_o + R)\cos\varphi} \\ \ell_i &= \sqrt{R^2 + (s_i - R)^2 + 2R(s_i - R)\cos\varphi} \\ OPL &= \frac{n_1\ell_o}{c} + \frac{n_2\ell_i}{c} \\ \frac{d(OPL)}{d\varphi} &= \frac{n_1R(s_o + R)\sin\varphi}{2\ell_o} - \frac{n_2R(s_i - R)\sin\varphi}{2\ell_i} = 0 \\ &= \frac{n_1}{\ell_o} + \frac{n_2}{\ell_i} = \frac{1}{R} \left(\frac{n_2s_i}{\ell_i} - \frac{n_1s_o}{\ell_o}\right)_{\text{But P will be different where for the part of the part o$$

Spherical Lens

$$\frac{n_1}{\ell_o} + \frac{n_2}{\ell_i} = \frac{1}{R} \left(\frac{n_2 s_i}{\ell_i} - \frac{n_1 s_o}{\ell_o} \right)$$

• Approximations for small ϕ :

$$\cos \varphi = 1 \qquad \sin \varphi = \varphi$$

$$\ell_o = s_o \qquad \qquad \ell_i = s_i$$

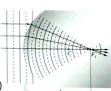
$$\frac{n_1}{s_o} + \frac{n_2}{s_i} = \frac{n_2 - n_1}{R}$$

- The position of P is independent of the location of A over a small area close to the optical axis.
- Paraxial rays: rays that form small angles with respect to the optical axis.
- Paraxial approximation: consider paraxial rays only.

Spherical Lens

• For parallel transmitted rays, $s_i
ightarrow \infty$

$$\frac{n_1}{s_o} + \frac{n_2}{s_i} = \frac{n_2 - n_1}{R} \to \frac{n_1}{f_o} = \frac{n_2 - n_1}{R}$$

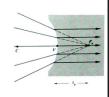

• First focal length (object focal length):

$$f_o = \frac{n_1}{n_2 - n_1} R$$
 • Second focal length

 Second focal length (Image focal length)

$$f_i = \frac{n_2}{n_2 - n_1} F$$

 $R > 0, n_2 > n_1 \rightarrow f > 0$ (converging lens)


Spherical Lens

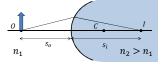
• When
$$R < 0$$
:
$$f_i = \frac{n_1}{n_2 - n_1} R$$

A virtual image appears on the object

$$f_o = \frac{n_2}{n_2 - n_1} R$$

Sign Conventions

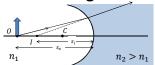
$$\frac{n_1}{S_o} + \frac{n_2}{S_i} = \frac{n_2 - n_1}{R}$$
Optical axis object distance object distance n_1 n_2


• Assuming light enters from the left:

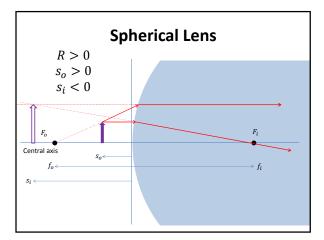
 $s_o, f_o > 0$ when left of vertex, V

 $s_i, f_i > 0$ when right of vertex, V

R>0 if C is on the right of vertex, V


Sign Conventions

$$\frac{n_1}{s_o} + \frac{n_2}{s_i} = \frac{n_2 - n_1}{R}$$


- Convex surface:
 - $-s_o$ is positive for objects on the incident-light side
 - $-s_i$ is positive for images on the refracted-light side
 - -R is positive if $\mathcal C$ is on the refracted-light side (see table 5.1 in the 4th edition...)

Sign Conventions

$$\frac{n_1}{s_o} + \frac{n_2}{s_i} = \frac{n_2 - n_1}{R}$$

- Concave surface:
 - $-s_o$ is positive for objects on the incident-light side
 - $-s_i$ is negative for images on the incident-light side
 - -R is negative if ${\it C}$ is on the incident-light side

Magnification

• Using these sign conventions, the magnification is

$$m = -\frac{n_1 s_i}{n_2 s_o}$$

- Ratio of image height to object height
- Sign indicates whether the image is inverted