

Physics 42200

Waves & Oscillations

Lecture 26 – Introduction to Optics

Spring 2016 Semester

Introduction to Optics

• If we can identify any system that is described by the wave equation, then we know everything!

$$\nabla^2 \psi = \frac{1}{v^2} \frac{\partial^2 \psi}{\partial t^2}$$

- Except that...
 - The geometry might be complicated
 - Boundary conditions might not be simple
 - Initial conditions might not be known
 - The solution is the superposition of incident waves and all possible reflected waves
- So we develop new ways of looking at this problem and call it optics.

Electromagnetism

- Geometric optics overlooks the wave nature of light.
 - Light inconsistent with longitudinal waves in an ethereal medium
 - Still an excellent approximation when feature sizes are large compared with the wavelength of light
- But geometric optics could not explain
 - Polarization
 - Diffraction
 - Interference
- A unified picture was provided by Maxwell c. 1864

Forces on Charges

• The magnitude of the attractive/repulsive force is

$$\vec{F} = k \; \frac{|Q_1||Q_2|}{r^2} \hat{r}$$

where

$$k = \frac{1}{4\pi\epsilon_0} = 8.99 \times 10^9 \; N \cdot m^2 \cdot C^{-2}$$

and therefore

$$\epsilon_0 = 8.85 \times 10^{-12} \ C^2 \cdot N^{-1} \cdot m^{-2}$$

(This constant is called the "permittivity of free space")

Electric Field

- An electric charge changes the properties of the space around it.
 - It is the source of an "electric field".
 - It could be defined as the "force per unit charge":

$$\vec{E} = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2} \hat{r} \implies \vec{F} = q\vec{E}$$

- Quantum field theory provides a deeper description...
- Gauss's Law:

Electric "flux" through surface S

Magnetic Field

• Moving charges (ie, electric current) produce a magnetic field:

$$\vec{B} = \frac{\mu_0}{4\pi} \int \frac{I \ d\vec{\ell} \times \hat{r}}{r^2}$$

A moving charge in a magnetic field experiences a force:

 $\vec{F} = q \ \vec{v} \times \vec{B}$ Lorentz force law: $\vec{F} = q \vec{E} + q \vec{v} \times \vec{B}$

Gauss's Law for Magnetism

• Electric charges produce electric fields:

$$\int\limits_{S} \widehat{n} \cdot \overrightarrow{E} \, dA \, = \frac{Q_{inside}}{\epsilon_0}$$

• But there are no "magnetic charges":

$$\int\limits_{S} \widehat{n} \cdot \overrightarrow{B} \, dA = 0$$

Magnetic "flux" through surface S

Ampere's Law

• An electric current produces a magnetic field that curls around it:

$$\oint_C \vec{B} \cdot d\vec{\ell} = \mu_0 I_C$$

(Close, but not quite the whole story)

Faraday's Law of Magnetic Induction

- Magnetic flux: $\phi_m = \int_S \; \vec{B} \cdot \hat{n} \, dA$
- Faraday observed that a changing magnetic flux through a wire loop induced a current

- It transferred energy to the charge carriers in the wire

$$\mathcal{E} = -\frac{d\phi_m}{dt}$$

$$\mathcal{E} = -\frac{d\phi_m}{dt}$$

$$\oint_C \vec{E} \cdot d\vec{\ell} = -\frac{d}{dt} \int_S \hat{n} \cdot \vec{B} dA$$

The Problem with Ampere's Law

Maxwell's Displacement Current

• We can think of the changing electric flux through S_2 as if it were a current:

$$I_d = \epsilon_0 \frac{d\phi_e}{dt} = \epsilon_0 \frac{d}{dt} \int_{S_2} \vec{E} \cdot \hat{n} \, dA$$

$$\oint_C \vec{B} \cdot d\vec{\ell} = \mu_0 (I + I_d) = \mu_0 I + \mu_0 \epsilon_0 \frac{d}{dt} \int_{S_2} \vec{E} \cdot \hat{n} \, dA$$

Maxwell's Equations (1864)

$$\oint_{S} \widehat{n} \cdot \overrightarrow{E} \, dA = \frac{Q_{inside}}{\epsilon_{0}} \qquad \boxed{1}$$

$$\oint_{S} \widehat{n} \cdot \overrightarrow{B} \, dA = 0 \qquad \boxed{2}$$

$$\oint_{C} \overrightarrow{E} \cdot d\overrightarrow{\ell} = -\frac{d\phi_{m}}{dt} \qquad \boxed{3}$$

$$\oint_{S} \widehat{n} \cdot \overrightarrow{B} \, dA = 0$$

$$\oint_{C} \vec{E} \cdot d\vec{\ell} = -\frac{d\phi_{m}}{dt}$$

(3
_ \	ر
	_

$$\oint_C \vec{B} \cdot d\vec{\ell} = \mu_0 I + \mu_0 \varepsilon_0 \frac{d\phi_e}{dt}$$

4

Maxwell's Equations in Free Space

In "free space" where there are no electric charges or sources of current, Maxwell's equations are quite symmetric:

$$\oint_{S} \widehat{\boldsymbol{n}} \cdot \overrightarrow{\boldsymbol{E}} \, dA = 0$$

$$\oint_{S} \widehat{\boldsymbol{n}} \cdot \overrightarrow{\boldsymbol{B}} \, dA = 0$$

$$\oint_{C} \overrightarrow{\boldsymbol{E}} \cdot d\overrightarrow{\ell} = -\frac{d\phi_{m}}{dt}$$

$$\oint_{C} \overrightarrow{\boldsymbol{B}} \cdot d\overrightarrow{\ell} = \mu_{0} \varepsilon_{0} \frac{d\phi_{e}}{dt}$$

Maxwell's Equations in Free Space

$$\oint_{C} \vec{E} \cdot d\vec{\ell} = -\frac{d\phi_{m}}{dt}$$

$$\oint_{C} \vec{B} \cdot d\vec{\ell} = \mu_{0} \varepsilon_{0} \frac{d\phi_{e}}{dt}$$

A changing magnetic flux induces an electric field. A changing electric flux induces a magnetic field.

Will this process continue indefinitely?

Light is an Electromagnetic Wave

• Faraday's Law:

$$\oint_{C} \vec{E} \cdot d\vec{\ell} = -\frac{d\phi_{m}}{dt} = -\frac{\partial B_{y}}{\partial t} \Delta x \Delta z$$

$$\oint_{C} \vec{E} \cdot d\vec{\ell} = E_{x}(z_{2}) \Delta x - E_{x}(z_{1}) \Delta x$$

$$\approx \frac{\partial E_{x}}{\partial z} \Delta z \Delta x$$

$$\stackrel{X}{=} \sum_{z_{1} = z_{2} = z} |\Delta x| \Delta x$$

Light is an Electromagnetic Wave

• Ampere's law:

$$\oint_C \vec{B} \cdot d\vec{\ell} = \mu_0 \epsilon_0 \frac{d\phi_e}{dt} = \mu_0 \epsilon_0 \frac{\partial E_x}{\partial t} \Delta y \Delta z$$

$$\oint_C \vec{B} \cdot d\vec{\ell} = B_y(z_1) \Delta y - B_y(z_2) \Delta y$$

$$\approx -\frac{\partial B_y}{\partial z} \Delta z \Delta y$$

$$\approx -\frac{\partial B_y}{\partial z} \Delta z \Delta y$$

Putting these together...

$$\frac{\partial E_x}{\partial z} = -\frac{\partial B_y}{\partial t}$$
$$-\frac{\partial B_y}{\partial z} = \mu_0 \epsilon_0 \frac{\partial E_x}{\partial t}$$

$$\frac{\partial^2 E_x}{\partial z^2} = -\frac{\partial^2 B_y}{\partial z \partial t}$$

Differentiate the first with respect to
$$z$$
:
$$\frac{\partial^2 E_X}{\partial z^2} = -\frac{\partial^2 B_y}{\partial z \partial t}$$
 Differentiate the second with respect to t :
$$-\frac{\partial^2 B_y}{\partial z \partial t} = \mu_0 \epsilon_0 \frac{\partial^2 E_X}{\partial t^2}$$

$$\frac{\partial^2 E_x}{\partial z^2} = \mu_0 \epsilon_0 \frac{\partial^2 E_x}{\partial t^2}$$

Velocity of Electromagnetic Waves

$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y}{\partial t^2}$$
$$\frac{\partial^2 E_x}{\partial x^2} = \mu_0 \epsilon_0 \frac{\partial^2 E_x}{\partial x^2}$$

Speed of wave propagation is
$$v = \frac{1}{\sqrt{\mu_0 \epsilon_0}}$$

$$= \frac{1}{\sqrt{(4\pi \times 10^{-7} N/A^2)(8.854 \times 10^{-12} \ C^2/N \cdot m)}}$$

$$= 2.998 \times 10^8 \ \text{m/s}$$

(speed of light)

Light is an Electromagnetic Wave

• Maxwell showed that these equations contain the wave equation:

$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y}{\partial t^2}$$

where y(x,t) is a function of position and time.

• General solution:

$$y(x,t) = f_1(x - vt) + f_2(x + vt)$$

• Harmonic solutions:

$$y(x,t) = y_0 \sin(kx \pm \omega t)$$

- Wavelength, $\lambda=2\pi/k$ and frequency $f=\omega/2\pi$.
- Velocity, $v = \lambda/f = \omega/k$.

The electromagnetic spectrum

- forms electromagnetic waves were ultraviolet, visible and infrared.
- The human eye is only sensitive to a very narrow range of wavelengths:

Discovery of Radio Waves ELECTRIC WAVES

The Electromagnetic Spectrum

Electromagnetic Waves

$$\frac{\partial^2 E_x}{\partial z^2} = \mu_0 \epsilon_0 \frac{\partial^2 E_x}{\partial t^2}$$

- A solution is $E_x(z,t) = E_0 \sin(kz \omega t)$ where $\omega = kc = 2\pi c/\lambda$
- What is the magnetic field?

That is the magnetic field?
$$\frac{\partial B_y}{\partial t} = -\frac{\partial E_x}{\partial z} = -kE_0\cos(kz - \omega t)$$

$$B_y(x,t) = \frac{k}{\omega}E_0\sin(kx - \omega t)$$

Electromagnetic Waves

- \vec{E} , \vec{B} and \vec{v} are mutually perpendicular.
- In general, the direction is

$$\hat{s} = \hat{E} \times \hat{B}$$

Energy in Electromagnetic Waves

Energy stored in electric and magnetic fields:

$$u_e = \frac{1}{2}\epsilon_0 E^2$$

$$u_m = \frac{1}{2\mu_0} B^2$$

For an electromagnetic wave, $B=E/c=E\sqrt{\mu_0\epsilon_0}$

$$u_m = \frac{1}{2\mu_0} B^2 = \frac{1}{2} \epsilon_0 E^2 = u_e$$

The total energy density is

$$u = u_m + u_e = \epsilon_0 E^2$$

Intensity of Electromagnetic Waves

• Intensity is defined as the average power transmitted per unit area.

Intensity = Energy density × wave velocity

$$I = \epsilon_0 c \langle E^2 \rangle = \frac{\langle E^2 \rangle}{\mu_0 c}$$

$$\mu_0 c = 377 \Omega \equiv Z_0$$

(Impedance of free space)

Poynting Vector

• We can construct a vector from the intensity and the direction $\hat{s} = \hat{E} \times \hat{B}$:

$$\vec{S} = \frac{\vec{E} \times \vec{B}}{\mu_0}$$

$$\langle \vec{S} \rangle = \frac{\langle \vec{E}^2 \rangle}{Z} = I$$

- This represents the flow of power in the direction \hat{s}
- Average electric field: $E_{rms}=E_0/\sqrt{2}$ $\left<\vec{S}\right>=\frac{(E_0)^2}{2Z_0}$

$$\langle \vec{S} \rangle = \frac{(E_0)^2}{2Z_0}$$

• Units: Watts/m²