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Physics 42200

Waves & Oscillations

Spring 2016 Semester
Matthew Jones

Lecture 21 – French, Chapter 8

Midterm Exam:

Date: Thursday, March 10th

Time: 8:00 – 10:00 pm

Room: MSEE B012

Material: French, chapters 1-8

Waves in Three Dimensions

• Wave equation in one dimension:

���
��� =

1
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• The solution, �(�, �), describes the shape of a string 
as a function of � and �.

• This is a transverse wave: the displacement is 
perpendicular to the direction of propagation.

• This would confuse the following discussion…

• Instead, let’s now consider longitudinal waves, like 
the pressure waves due to the propagation of sound 
in a gas.
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Waves in Three Dimensions

• Wave equation in one dimension:
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• The solution, �(�, �), describes the excess pressure 
in the gas as a function of � and �.

• What if the wave was propagating in the �-direction?
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• What if the wave was propagating in the 
-direction?

���
�
� = 1

��
���
���

Waves in Three Dimensions

• The excess pressure is now a function of �� and �.

• Wave equation in three dimensions:
���
��� +
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• But we like to write it this way:

��� = 1
��

���
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• Where �� is called the “Laplacian operator”, but you 

just need to think of it as a bunch of derivatives:

�� ≡ ��
��� +

��
��� +

��
�
�

Waves in Three Dimensions

• Wave equation in three dimensions:

��� = 1
��

���
���

• How do we solve this?  Here’s how…

� ��, � = ���� �∙�����
• One partial derivatives:

��
�� = ����� �∙����� �

�� � ∙ �� − ��
= ����� �∙����� �

�� ��� + ��� + � 
 − ��
= ���� ��, �

• Second derivative:

���
��� = −���	�(��, �)
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Waves in Two and Three Dimensions

• Wave equation in three dimensions:

��� = 1
��

���
���

• Second derivatives:

���
��� = −���	�(��, �)
���
��� = −���	�(��, �)
���
�
� = −� �	�(��, �)
���
��� = −��	�(��, �)

Waves in Two and Three Dimensions

• Wave equation in three dimensions:

��� = 1
��

���
���

− ��� + ��� + � � � ��, � = −��

�� �(��, �)
• Any values of ��, ��, � 		satisfy the equation, 

provided that

� = � ��� + ��� + � � = � �
• If �� = � = 0 then � ��, � = ���� �#���� but this 

described a wave propagating in the +� direction.

Waves in Three Dimensions

• As usual, we are mainly 
interested in the real 
component:

$ %�, � � & cos � ∙ �� � ��
• A wave propagating in the 

opposite direction would be 
described by

$′ %�, � � &′ cos � ∙ �� � ��
• The points in a plane with a 

common phase is called the 
“wavefront”.
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Waves in Three Dimensions

$ %�, � = & cos � ∙ �� ∓ ��
• Sometimes we are free to pick a coordinate system in 

which to describe the wave motion.

• If we choose the �-axis to be in the direction of 
propagation, we get back the one-dimensional 
solution we are familiar with:

$ %�, � = & cos �� ∓ ��
• But in one-dimension we saw that any function that 

satisfied ,(� ± ��) was a solution to the wave 
equation.

• What is the corresponding function in three 
dimensions?

Waves in Three Dimensions

� � � ��� � ��� � � � � � �
• General solution to the wave equation are functions 

that are twice-differentiable of the form:

$ %�, � = ./, �0 ∙ %� − �� + .�1 �0 ∙ %� + ��
where �0 = �/ �

• Just like in the one-dimensional case, these do not 

have to be harmonic functions.

Waves in Two Dimensions

• Plane waves frequently provide a good description of 

physical phenomena, but this is usually an 

approximation:

• This looks like a wave… can the wave equation 

describe this?
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Waves in Two Dimensions

• Rotational symmetry:

– Cartesian coordinates are not well suited for describing this 

problem.

– Use polar coordinates instead.

– Motion should depend on % but should be independent of 3

4

5

6

7 8

Waves in Two Dimensions

• Wave equation:  ��$ � /
9:

;:<
;�:

• How do we write �� in polar coordinates?

% � �� � ��
� � % cos 3
� = % sin3

• Derivatives:

;?
;� =

�
?

;?
;� =

�
?

;@
;� = − �

?:
;@
;� =

�
?:

3 = tan�/ �
�

Waves in Two Dimensions



2/29/2016

6

Waves in Two Dimensions

• Laplacian in polar coordinates:

��$ � ��$
�%� � 1

%
�$
�% � 1

%�
��$
�3� �

��$
�
�

• When the geometry does not depend on 3 or 
:

��$ � ��$
�%� � 1

%
�$
�%

� 1
%
�
�% % �$�%

• Wave equation:

��$ � 1
%
�
�% % �$�% � 1

��
��$
���

Waves in Two Dimensions

• Wave equation:

��$ � 1
%
�
�% % �$�% � 1

��
��$
���

• If we assume that 
;:<
;�: � �ω�$ then the equation is:

��$
�%� � 1

%
�$
�% � ��

�� $ � 0
• Change of variables:  Let D � %�/�

��

��
��$
�D� �

��

��
1
D
�$
�D ���

�� $ � 0
��$
�D� �

1
D
�$
�D � $(D) � 0

Waves in Two Dimensions

• Bessel’s Equation:

��$
�D� �

1
D
�$
�D � $(D) � 0

• Solutions are “Bessel functions”: E�(D), F� D

D

GH(I)

JH(I)
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• Solutions: E�(�%), F�(�%)
• Graphs:

• Series representation:

E� �% � K �1 L �% �L

2�L N! �

P

LQ�

• Solutions: sin �� , cos ��
• Graphs:

• Series representation:

cos �� = K −1 L �� �L

2N !
P

LQ�

Bessel Functions?
RST
R4S � US

VS T � H RST
R8S � W

8
RT
R8 � US

VS T � H

Asymptotic Properties

• At large values of %…

�%

GH(X8)

JH(X8)

2Y 4Y 6Y 8Y 10Y 12Y 14Y

Y/4

Y/4

Asymptotic Properties

• When % is large, for example, �% ≫ 1
E� �% ≈ 2/Y cos �% − Y/4

�%
F�(�%) ≈ 2/Y sin �% − Y/4

�%

�%
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Example

• What are the frequencies of the rotationally 

symmetric normal modes of oscillation for the 

surface of a circular drum of radius _ for 

which the speed of wave propagation is �?

– The speed would depend on things like the 

surface tension and mass per unit area, but the 

solution only depends on the value of �.

Example

• How is this similar to the string with fixed ends?

– Look for solutions to the wave equation that satisfy the 

boundary conditions.

– When � �, � = 0 for � = 0 and � = `, these were

�L �, � = sin NY�
` cos�L�

– We substitute this back into the wave equation to find �L:

���
��� =

1
��

���
���

NY
`

�
−�L�

�� �L �, � = 0
�L = NY�

`

Example

• In the case of a circular drum we have to pick the 

form of the solution that we expect:

– It can’t be F�(�%) because this one diverges at % � 0
– It must be E� �% but only when � makes it satisfy the 

boundary condition E� �_ � 0.
– Asymptotic form of the solution:

E� �% ≈ 2/Y cos �% − Y/4
�%

– The argument of the cosine function must be:

�_ − Y 4⁄ = c
� ,

dc
� , ec� , etc…
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Example

�_ � Y 4⁄ � c
� ,

dc
� , ec� , …

• In general, �L_ � Y 4⁄ � (2N − 1)Y/2
�L =

1

_

Y

2
2N − 1 +

Y

4

=
NY

_
−
Y

4_
• Frequencies are

�L = ��L =
�

_
NY −

Y

4

Example

• Various numerical methods are available to 

evaluate E�(�%) and to find its roots

– Just like there are numerical methods at your 

disposal to evaluate sin(��) and cos(��).

Energy

• The energy carried by a wave is proportional to the 

square of the amplitude.

• When $(%, �)~& ghi �?

?
the energy density decreases 

as 1/%

• But the wave is spread out on a circle of 

circumference 2Y%
• The total energy is constant, independent of %
• At large % they look like plane waves:


