

Physics 42200 Waves & Oscillations

Lecture 21 – French, Chapter 8

Spring 2016 Semester

Matthew Jones

Midterm Exam:

Date: Thursday, March 10th

Time: 8:00 - 10:00 pm

Room: MSEE B012

Material: French, chapters 1-8

Wave equation in one dimension:

$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y}{\partial t^2}$$

- The solution, y(x,t), describes the shape of a string as a function of x and t.
- This is a transverse wave: the displacement is perpendicular to the direction of propagation.
- This would confuse the following discussion...
- Instead, let's now consider longitudinal waves, like the pressure waves due to the propagation of sound in a gas.

Wave equation in one dimension:

$$\frac{\partial^2 p}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 p}{\partial t^2}$$

- The solution, p(x, t), describes the excess pressure in the gas as a function of x and t.
- What if the wave was propagating in the y-direction?

$$\frac{\partial^2 p}{\partial y^2} = \frac{1}{v^2} \frac{\partial^2 p}{\partial t^2}$$

What if the wave was propagating in the z-direction?

$$\frac{\partial^2 p}{\partial z^2} = \frac{1}{v^2} \frac{\partial^2 p}{\partial t^2}$$

- The excess pressure is now a function of \vec{x} and t.
- Wave equation in three dimensions:

$$\frac{\partial^2 p}{\partial x^2} + \frac{\partial^2 p}{\partial y^2} + \frac{\partial^2 p}{\partial z^2} = \frac{1}{v^2} \frac{\partial^2 p}{\partial t^2}$$

But we like to write it this way:

$$\nabla^2 p = \frac{1}{v^2} \frac{\partial^2 p}{\partial t^2}$$

• Where ∇^2 is called the "Laplacian operator", but you just need to think of it as a bunch of derivatives:

$$\nabla^2 \equiv \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

Wave equation in three dimensions:

$$\nabla^2 p = \frac{1}{v^2} \frac{\partial^2 p}{\partial t^2}$$

How do we solve this? Here's how...

$$p(\vec{x},t) = p_0 e^{i(\vec{k}\cdot\vec{x} - \omega t)}$$

One partial derivatives:

$$\frac{\partial p}{\partial x} = ip_0 e^{i(\vec{k}\cdot\vec{x} - \omega t)} \frac{\partial}{\partial x} (\vec{k}\cdot\vec{x} - \omega t)$$

$$= ip_0 e^{i(\vec{k}\cdot\vec{x} - \omega t)} \frac{\partial}{\partial x} (k_x x + k_y y + k_z z - \omega t)$$

$$= ik_x p(\vec{x}, t)$$

Second derivative:

$$\frac{\partial^2 p}{\partial x^2} = -k_x^2 \, p(\vec{x}, t)$$

Waves in Two and Three Dimensions

Wave equation in three dimensions:

$$\nabla^2 p = \frac{1}{v^2} \frac{\partial^2 p}{\partial t^2}$$

Second derivatives:

$$\frac{\partial^2 p}{\partial x^2} = -k_x^2 p(\vec{x}, t)$$

$$\frac{\partial^2 p}{\partial y^2} = -k_y^2 p(\vec{x}, t)$$

$$\frac{\partial^2 p}{\partial z^2} = -k_z^2 p(\vec{x}, t)$$

$$\frac{\partial^2 p}{\partial z^2} = -k_z^2 p(\vec{x}, t)$$

$$\frac{\partial^2 p}{\partial t^2} = -\omega^2 p(\vec{x}, t)$$

Waves in Two and Three Dimensions

Wave equation in three dimensions:

$$\nabla^2 p = \frac{1}{v^2} \frac{\partial^2 p}{\partial t^2}$$
$$-(k_x^2 + k_y^2 + k_z^2)p(\vec{x}, t) = -\frac{\omega^2}{v^2} p(\vec{x}, t)$$

• Any values of k_x , k_y , k_z satisfy the equation, provided that

$$\omega = v \sqrt{k_x^2 + k_y^2 + k_z^2} = v |\vec{k}|$$

• If $k_y = k_z = 0$ then $p(\vec{x}, t) = p_0 e^{i(k_x x - \omega t)}$ but this described a wave propagating in the +x direction.

 As usual, we are mainly interested in the real component:

$$\psi(\vec{r},t) = A\cos(\vec{k}\cdot\vec{x} - \omega t)$$

A wave propagating in the opposite direction would be described by

$$\psi'(\vec{r},t) = A'\cos(\vec{k}\cdot\vec{x} + \omega t)$$

• The points in a plane with a common phase is called the "wavefront".

$$\psi(\vec{r},t) = A\cos(\vec{k}\cdot\vec{x} \mp \omega t)$$

- Sometimes we are free to pick a coordinate system in which to describe the wave motion.
- If we choose the x-axis to be in the direction of propagation, we get back the one-dimensional solution we are familiar with:

$$\psi(\vec{r},t) = A\cos(kx \mp \omega t)$$

- But in one-dimension we saw that any function that satisfied $f(x \pm vt)$ was a solution to the wave equation.
- What is the corresponding function in three dimensions?

$$\omega = v \sqrt{k_x^2 + k_y^2 + k_z^2} = v |\vec{k}|$$

 General solution to the wave equation are functions that are twice-differentiable of the form:

$$\psi(\vec{r},t) = C_1 f(\hat{k} \cdot \vec{r} - vt) + C_2 g(\hat{k} \cdot \vec{r} + vt)$$
where $\hat{k} = \vec{k}/|\vec{k}|$

• Just like in the one-dimensional case, these do not have to be harmonic functions.

 Plane waves frequently provide a good description of physical phenomena, but this is usually an approximation:

 This looks like a wave... can the wave equation describe this?

- Rotational symmetry:
 - Cartesian coordinates are not well suited for describing this problem.
 - Use polar coordinates instead.
 - Motion should depend on r but should be independent of θ

- Wave equation: $\nabla^2 \psi = \frac{1}{v^2} \frac{\partial^2 \psi}{\partial t^2}$
- How do we write ∇^2 in polar coordinates?

Derivatives:

$$\frac{\partial r}{\partial x} = \frac{x}{r} \qquad \qquad \frac{\partial r}{\partial y} = \frac{y}{r}$$

$$\frac{\partial \theta}{\partial x} = -\frac{y}{r^2} \qquad \qquad \frac{\partial \theta}{\partial y} = \frac{x}{r^2}$$

$$= \cos \theta \left[\frac{\partial^2 u}{\partial x^2} \frac{\partial x}{\partial r} + \frac{\partial^2 u}{\partial x \partial y} \frac{\partial y}{\partial r} \right] + \sin \theta \left[\frac{\partial^2 u}{\partial x \partial y} \frac{\partial x}{\partial r} + \frac{\partial^2 u}{\partial y^2} \frac{\partial y}{\partial r} \right]$$
$$= \cos^2 \theta \frac{\partial^2 u}{\partial x^2} + 2 \sin \theta \cos \theta \frac{\partial^2 u}{\partial x \partial y} + \sin^2 \theta \frac{\partial^2 u}{\partial y^2}$$

Similarly,

$$\frac{\partial u}{\partial \theta} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial \theta} = -r \sin \theta \frac{\partial x}{\partial x} + r \cos \theta \frac{\partial u}{\partial y}$$

Taking one more derivative, we see

Now we're ready to put everything together:

$$\frac{\partial^2 u}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = \cos^2 \theta \frac{\partial^2 u}{\partial x^2} + 2 \cos \theta \sin \theta \frac{\partial^2 u}{\partial x \partial y} + \sin^2 \theta \frac{\partial^2 u}{\partial y^2} - \frac{1}{r} \frac{\partial u}{\partial r} + \sin^2 \theta \frac{\partial^2 u}{\partial x^2} - 2 \cos \theta \sin \theta \frac{\partial^2 u}{\partial x \partial y} + \cos^2 \theta \frac{\partial^2 u}{\partial y^2} \\
= (\cos^2 \theta + \sin^2 \theta) \frac{\partial^2 u}{\partial x^2} + (\cos^2 \theta + \sin^2 \theta) \frac{\partial^2 u}{\partial y^2} - \frac{1}{r} \frac{\partial u}{\partial r}$$

Laplacian in polar coordinates:

$$\nabla^2 \psi = \frac{\partial^2 \psi}{\partial r^2} + \frac{1}{r} \frac{\partial \psi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \psi}{\partial \theta^2} + \frac{\partial^2 \psi}{\partial z^2}$$

• When the geometry does not depend on θ or z:

$$\nabla^2 \psi = \frac{\partial^2 \psi}{\partial r^2} + \frac{1}{r} \frac{\partial \psi}{\partial r}$$
$$= \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \psi}{\partial r} \right)$$

• Wave equation:

$$\nabla^2 \psi = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \psi}{\partial r} \right) = \frac{1}{v^2} \frac{\partial^2 \psi}{\partial t^2}$$

• Wave equation:

$$\nabla^2 \psi = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \psi}{\partial r} \right) = \frac{1}{v^2} \frac{\partial^2 \psi}{\partial t^2}$$

• If we assume that $\frac{\partial^2 \psi}{\partial t^2} = -\omega^2 \psi$ then the equation is:

$$\frac{\partial^2 \psi}{\partial r^2} + \frac{1}{r} \frac{\partial \psi}{\partial r} + \frac{\omega^2}{v^2} \psi = 0$$

• Change of variables: Let $\rho = r\omega/v$

$$\frac{\omega^2}{v^2} \frac{\partial^2 \psi}{\partial \rho^2} + \frac{\omega^2}{v^2} \frac{1}{\rho} \frac{\partial \psi}{\partial \rho} + \frac{\omega^2}{v^2} \psi = 0$$
$$\frac{\partial^2 \psi}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial \psi}{\partial \rho} + \psi(\rho) = 0$$

Bessel's Equation:

$$\frac{\partial^2 \psi}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial \psi}{\partial \rho} + \psi(\rho) = 0$$

• Solutions are "Bessel functions": $J_0(\rho)$, $Y_0(\rho)$

Bessel Functions?

$$\frac{\partial^2 \psi}{\partial x^2} + \frac{\omega^2}{v^2} \psi = 0$$

- Solutions: $\sin kx$, $\cos kx$
- Graphs:

• Series representation:

$$\cos kx = \sum_{n=0}^{\infty} \frac{(-1)^n (kx)^{2n}}{(2n)!}$$

$$\frac{\partial^2 \psi}{\partial r^2} + \frac{1}{r} \frac{\partial \psi}{\partial r} + \frac{\omega^2}{v^2} \psi = 0$$

- Solutions: $J_0(kr)$, $Y_0(kr)$
- Graphs:

• Series representation:

$$J_0(kr) = \sum_{n=0}^{\infty} \frac{(-1)^n (kr)^{2n}}{2^{2n} (n!)^2}$$

Asymptotic Properties

At large values of r...

Asymptotic Properties

• When r is large, for example, $kr \gg 1$

$$J_0(kr) \approx \sqrt{2/\pi} \frac{\cos(kr - \pi/4)}{\sqrt{kr}}$$

$$Y_0(kr) \approx \sqrt{2/\pi} \frac{\sin(kr - \pi/4)}{\sqrt{kr}}$$

- What are the frequencies of the rotationally symmetric normal modes of oscillation for the surface of a circular drum of radius R for which the speed of wave propagation is v?
 - The speed would depend on things like the surface tension and mass per unit area, but the solution only depends on the value of v.

- How is this similar to the string with fixed ends?
 - Look for solutions to the wave equation that satisfy the boundary conditions.
 - When y(x,t) = 0 for x = 0 and x = L, these were $y_n(x,t) = \sin\left(\frac{n\pi x}{L}\right)\cos\omega_n t$
 - We substitute this back into the wave equation to find ω_n :

$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y}{\partial t^2}$$

$$\left[\left(\frac{n\pi}{L} \right)^2 - \frac{\omega_n^2}{v^2} \right] y_n(x, t) = 0$$

$$\omega_n = \frac{n\pi v}{L}$$

- In the case of a circular drum we have to pick the form of the solution that we expect:
 - It can't be $Y_0(kr)$ because this one diverges at r=0
 - It must be $J_0(kr)$ but only when k makes it satisfy the boundary condition $J_0(kR) = 0$.
 - Asymptotic form of the solution:

$$J_0(kr) \approx \sqrt{2/\pi} \frac{\cos(kr - \pi/4)}{\sqrt{kr}}$$

— The argument of the cosine function must be:

$$kR - \pi/4 = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \text{ etc...}$$

$$kR - \pi/4 = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \dots$$

• In general, $k_n R - \pi/4 = (2n - 1)\pi/2$

$$k_n = \frac{1}{R} \left(\frac{\pi}{2} (2n - 1) + \frac{\pi}{4} \right)$$
$$= \frac{n\pi}{R} - \frac{\pi}{4R}$$

Frequencies are

$$\omega_n = vk_n = \frac{v}{R} \left(n\pi - \frac{\pi}{4} \right)$$

- Various numerical methods are available to evaluate $J_0(kr)$ and to find its roots
 - Just like there are numerical methods at your disposal to evaluate sin(kx) and cos(kx).

n	Rkn (approx)	Zn (exact)
1	$3\pi/4 = 2.3562$	2.4048
2	711/4 = 5 4978	5.5201
3	$11\pi/4 = 8.6394$	8.6537
4	15174 = 11.7810	11.7915
5	$19\pi/4 = 14.9226$	14.9309

Energy

- The energy carried by a wave is proportional to the square of the amplitude.
- When $\psi(r,t) \sim A \frac{\cos kr}{\sqrt{r}}$ the energy density decreases as 1/r
- But the wave is spread out on a circle of circumference $2\pi r$
- The total energy is constant, independent of r
- At large r they look like plane waves:

