PURDUE D) EpaRTMENT OF Physics

Physics 42200
Waves & Oscillations

Lecture 21 — French, Chapter 8
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Midterm Exam:

Date: Thursday, March 10th
Time: 3:00 —10:00 pm
Room: MSEE BO12

Material: French, chapters 1-8



Waves in Three Dimensions

Wave equation in one dimension:

0’y 1 0%

0x2  v2 0t?
The solution, y(x, t), describes the shape of a string
as a function of x and t.

This is a transverse wave: the displacement is
perpendicular to the direction of propagation.

This would confuse the following discussion...

Instead, let’s now consider longitudinal waves, like
the pressure waves due to the propagation of sound
In a gas.




Waves in Three Dimensions

Wave equation in one dimension:

0%p 1 0%p

0x2 2 0t?
The solution, p(x, t), describes the excess pressure
in the gas as a function of x and ¢.

What if the wave was propagating in the y-direction?

d%p 1 0%p
dy?2 ~ v2 9t2

What if the wave was propagating in the z-direction?
d%p 1 0°%p

0z2 2 9t2



Waves in Three Dimensions

The excess pressure is how a function of X and t.

Wave equation in three dimensions:
ik ik 0% 1 0%
p 9%p 0°p_10%
0x* 0y? 0z? v?0t?
But we like to write it this way:
1 0%p
Vip = ——
P =252
Where 72 is called the “Laplacian operator”, but you
just need to think of it as a bunch of derivatives:
0% 0% 0%
+—+—
0x* 0dy? 0z?

VZ




Waves in Three Dimensions

Wave equation in three dimensions:

\72p — i@
v? 0t?
How do we solve this? Here’s how... a8
p(E,t) = poe'-4) &
One partial derivatives: /
dop - Jd -
P lpoe‘(kx “)t) (k X — wt)

= ipyel(K%- “’t) (k x+kyy+kzz—a)t)

lkxp(x t)

Second derivative:

0°p N
v —kz p(%,1)



Waves in Two and Three Dimensions

 Wave equation in three dimensions:

1 0%p
Vip =
P v2 0t?
e Second derivatives:
0°p ,
W — _kazc p(x' t)
2
p S
a—yz — —k:}z, p(x, t)
°p
5,7 —kZ p(X,t)
02
7 =~ pE,0)



Waves in Two and Three Dimensions

Wave equation in three dimensions:
1 0%p

VZp =
P V2 Ot2

2

- W -
(k2 + K3+ k)p(E,0) = ——p(& 1)

Any values of k,, k,, k, satisfy the equation,
provided that

a)=v\/k,%+k32,+k§:v|E|

If ky, = k, = 0 then p(x,t) = poe Kx¥=®t) byt this
described a wave propagating in the +x direction.



Waves in Three Dimensions

e As usual, we are mainly
interested in the real
component:

Y@, t)=A cos(l_g - X — wt)

* A wave propagating in the
opposite direction would be
described by

Y'(F,t) = A’ COS(I_() - X + wt)
 The points in a plane with a

common phase is called the
“wavefront”.




Waves in Three Dimensions

Y(r,t)=A COS(I_c) - X F wt)
Sometimes we are free to pick a coordinate system in
which to describe the wave motion.

If we choose the x-axis to be in the direction of
propagation, we get back the one-dimensional
solution we are familiar with:

Y(r,t) = Acos(kx + wt)

But in one-dimension we saw that any function that
satisfied f (x + vt) was a solution to the wave
equation.

What is the corresponding function in three
dimensions?



Waves in Three Dimensions

a)=v\/k,%+k32,+k§:v|E|

* General solution to the wave equation are functions
that are twice-differentiable of the form:

Y@, t) = Cf (k-7 —vt) + Cog(k - 7 + vt)
where k = E/‘E‘
e Just like in the one-dimensional case, these do not
have to be harmonic functions.



Waves in Two Dimensions

* Plane waves frequently provide a good description of
physical phenomena, but this is usually an
approximation:

* This looks like a wave... can the wave equation
describe this?



Waves in Two Dimensions

e Rotational symmetry:

— Cartesian coordinates are not well suited for describing this
problem.

— Use polar coordinates instead.
— Motion should depend on r but should be independent of 6




Waves in Two Dimensions

* Wave equation: V% = v%%
* How do we write V2 in polar coordinates?
r = \/x2 + y?
X =71cos6
y =rsinf } 6 = tan™ (%)
* Derivatives:
or _ x or _y
ax 1 ay
60 Yy 6  «x
ax r2 ay  r2



Waves in Two Dimensions

% u {‘).J

B 0 J%u Oy + sinf[ L0 O*u dr  FPudy
oS [i) 2 Or r)u).'/ r PR dxdy ar r"),.'/'-’ r
0 u )° , O
cOs” Hr \mﬁmsﬁl u + sin” ( l:
t)l- dxdy dJdy-
Similarly.
Au  dudr  Ou dy %
—_— = ——t ——— =7 111! +1\9(
90 0x 00 Oy 00 ‘% 'Ng‘z f
Taking one more derivative, we see Q \(:b \\O
QO’QQ (\5\(\ S\O
% u ) A u - Q \Z
—[— sinf— 08 f— N\ ’\o O
BYE Tl simbg, +eosta \* o&'
du du () ()l,v u dr D%udy .
- r (-(mH_— rsinf— + 1 sin @ —) + (——— — I—,I]
dr Ay Q," ) \} rdy 067 dxdy o dy* db
) i )- )*
= J'('UHH(_l 1\1119— J;\Samﬂbe’i slf'p =+ rcost cu )+ cos @ rsinH_( _” : r cos - -
dr ) .'/ S’ Q 60 r)r- dxdy dxdy Dy’
o 9 $Qj*% N 9 .cin g J*u ' cos? Hr’)'—'u]
= reosfl— — rsin Toin /g— 2 cos # sin cos”
dux \ﬁ‘) da* drdy dy?
(\
du 0 u y  0%u
o + 7 sm&\\é\—ﬁé) N> ’@H sin #/ 9200 + cos” Hf)fl‘]
N
Now we're ready to put every tlunt’&w(rhv
A u 1 J*u 5 U J%u % u 1 du 2 % Y
— + —— cos™ —— + 2cosfsinf + sin~ , 4 sinc 2cosfsinf + cos™#
ar?  r? 06 da? Adxdy 0 Ay rdr dx* i dady
) 5 o0 0? 1)
= (cos~ 0+ Hi]l‘ﬁj(_ {I F (cos” @ + sin® ) - —(.i
dx? dy* 1 or

)]




Waves in Two Dimensions

e Laplacian in polar coordinates:
0%y 1oy 10%yY 0%y

2.1 _ Y T
VY 01?2 +r6r+r2682+622

 When the geometry does not depend on 6 or z:
0%y 10y

2. o v 2Y¥
ey 6r2+r6r

_16 oY
 ror ’"ar

10 oY 1 0%y
2 —_ —— — | =
vy (T 0r> v2 Jdt?

* Wave equation:




Waves in Two Dimensions

* Wave equation:
10 [ oy 1 0%y
Vi = __(T_) - V2 0t?

ror\ or
92 2 .
* |f we assume that —Z = W Y then the equation is:

0y 10y w?
dr? +;6r+v2¢_0

* Change of variables: Letp = rw/v




Waves in Two Dimensions

e Bessel’s Equation:

0%  10Y
oo+ P(p) = 0
dp?  pap
* Solutions are “Bessel functions”: J,(p), Yo (p)

=
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 Graphs:

Bessel Functions?

Solutions: sin kx, cos kx
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Series representation:

cos kx =

o (—D)" (kx)2n

n=0

(2n)!

%Yy 10y w?
12 +;6r+v2¢_0

Solutions: Jo(kr), Yy (kT)
 Graphs:

O%MNNNWNM

* Series representation:
- (—1)"(kr)?"
22n(n!)2

JoCkr) =

n=0



Asymptotic Properties

e Atlarge values of r...
Zn 4 67T 87t 107 127‘[ 14m
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Asymptotic Properties

 Whenrrislarge, for example, kr > 1

N cos(kr —m/4)
Jo(kr) = |/2/m Jkr

N sin(kr —m/4)
Yo(kr) = /2 /1 N

2r
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Example

 What are the frequencies of the rotationally
symmetric normal modes of oscillation for the
surface of a circular drum of radius R for
which the speed of wave propagation is v?
— The speed would depend on things like the

surface tension and mass per unit area, but the
solution only depends on the value of v.



Example

 How is this similar to the string with fixed ends?

— Look for solutions to the wave equation that satisfy the
boundary conditions.
— When y(x,t) = 0 for x = 0 and x = L, these were

nix

yn(x,t) = sin (T) COS w,t

— We substitute this back into the wave equation to find w,;:
0%y 1 0%y

0x?2 _2 v2 Jt2

() =% =0

nimv
Wy = _L



Example

In the case of a circular drum we have to pick the
form of the solution that we expect:
— It can’t be Y, (kr) because this one diverges atr = 0

— It must be J,(kr) but only when k makes it satisfy the
boundary condition /4 (kR) = 0.

— Asymptotic form of the solution:
cos(kr —m/4)
(kr) = /2/m
]O / \/E

— The argument of the cosine function must be:

kR — /4 = E,B—R,S—n, etc...
2’ 2" 2



Example

T 31T 57
kR—T[/4=E, SRR ER

* Ingeneral, k,R—n/4=02n—1)m/2

. _1(7‘[(2 1)+T[)
n = p\y 4
_TlTL’ JIA
R 4R

* Frequencies are

w, = vk, =%(nn—g)



Example

e Various numerical methods are available to
evaluate Jy(kr) and to find its roots

— Just like there are numerical methods at your
disposal to evaluate sin(kx) and cos(kx).

R}Cﬂ (a_[)proxx WEI ... (i‘)rac*f?)
2w/ = 2.3%01 2.4048
o Fn/g =5 4973 5.5201
NTA =8639 £.653%
e/ FH R8O ¢ | )) .15

owm/a =4 9226 | )4.93209



Energy

The energy carried by a wave is proportional to the
square of the amplitude.

When Y (r,t)~A
as 1/r

But the wave is spread out on a circle of
circumference 2mr

CcoS kr

VT

the energy density decreases

The total energy is constant, independent of r
At large r they look like plane waves:

@MY




