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Physics 42200
Waves & Oscillations

Lecture 20 — French, Chapter 8

Spring 2016 Semester

Midterm Exam:

Date: Thursday, March 10t
Time: 8:00—-10:00 pm
Room: MSEE B012

Material: French, chapters 1-8

Impedance

Mechanical impedance:

Z=T/v=Tu

Electrical impedance:
Z = \L'/C

— Capacitance per unit length: ¢’ = 22
log(2)
1 .
m R _ Coaxial
— Inductance per unit length: L' = —010g(—2) ‘ cable
2m Ry
1 c

— Speed in cable: v =

-

¢ &Gl e
1
— Impedance: Z = —

R
Mo log (_2)
27 | €réo Ry




Electrical Impedance

_ 1 [ po R,
Z= 21 €r€p log <R1

¢ This depends on the geometry of the cable
¢ The dimensions are ohms

7 60 Ql <R2>
=——log| =—
VEr R,

e As far as pulses are concerned, the cable looks like a

resistance and satisfies Ohm’s law:
1=V/Z

2/21/2016

Electrical Impedance

¢ Impedance at the end of the cable:

A @— Open circuit, Z' = oo
A 9—\ Short circuit, Z' = 0

R
7 6—\ AN HI Resistor, Z' = R

Electrical Impedance

Reflection coefficient:

ARA
P=7+2Z
Transmission coefficient:
_ 27’
T7vz

Limiting cases to remember:
— Open circuit: p = 1,7 =2

— Short circuit: p = -1,7 =0

— Matched, Z' =Z:p=0,7=1.




Power Transmission

¢ How much power is reflected?
— Open circuit or short circuit:
V2 V(7 -Z 2 V2
i =7=7<z'+z> 7N
— Reflected power is zero when Z' = Z

— In this case, all power must be transmitted

— Maximal power is transferred to a load of
resistance R when R = Z.

— This is called impedance matching.
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Source Impedance

* An ideal voltage source provides a given
voltage, independent of the current.
— But real voltage sources can’t deliver arbitrarily
large currents
¢ Voltage sources are modelled by an ideal
voltage source and a resistor:

This resistance is called the
source impedance.

R Sometimes we want the
source impedance to be
finite...

Drivers/Receivers

¢ Now we can model the entire cable:

Z,
f 2 v

e Current frégm the source:
I 4
\ CZ+Z

* Voltage at ﬁhe left end of the cable:

Vi=V—1Z,=V

Z+7Z




Drivers/Receivers

¢ Voltage pulse propagates to the receiver

Zs Z,
(5 ( A (}“J\/Vj
_/

¢ The pulse might be reflected at the receiver
_Zy—Z
P=7 %2

¢ When Z, < Z the reflected pulse is inverted.

2/21/2016

Drivers/Receivers

* Voltage pulse propagates back to the source
Z

¢ The pulse can also be reflected from an
impedance mismatch at the source:
Zs—Z
P=7.+z
* When Z; > Z the reflected pulse is not inverted.

Drivers/Receivers

¢ Reflected pulse propagates to the receiver
Z

—

¢ The system is linear, so the observed signal at
any point is the sum of all incident and
reflected waves.




Waves in Three Dimensions

Wave equation in one dimension:

0%y 1 0%

0x2  v2 ot?
The solution, y(x, t), describes the shape of a string
as a function of x and t.

This is a transverse wave: the displacement is
perpendicular to the direction of propagation.

This would confuse the following discussion...
Instead, let’s now consider longitudinal waves, like
the pressure waves due to the propagation of sound
in a gas.

2/21/2016

Waves in Three Dimensions

Wave equation in one dimension:

°p 19%

x2 ~ v2 ot?
The solution, p(x, t), describes the excess pressure
in the gas as a function of x and t.

What if the wave was propagating in the y-direction?

a°p 10%
ay? ~ v?ot?

What if the wave was propagating in the z-direction?
’p 10d%

922 2 Ot2

Waves in Three Dimensions

The excess pressure is now a function of X and t.

Wave equation in three dimensions:
°p 3°p *p 19%

ox2 " 9y? | 9z2 vZot?
But we like to write it this way:

Where V72 is called the “Laplacian operator”, but you
just need to think of it as a bunch of derivatives:
02 02 02
2 —

=t ton




Waves in Three Dimensions

¢ Wave equation in three dimensions:

, 13
T v2oc?
¢ How do we solve this? Here’s how... Se
p(E, ) = pye'(FF-00) o
* One partial derivatives:
7 o d - ‘
0_Z = ipoe‘@"“‘”t)a (k-2 - wt)
. a
= ipyeilki-wt) a(kxx + kyy + kyz — wt)
= ikyp(¥%,t)
* Second derivative:
a%p S
3z = kepE D
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Waves in Two and Three Dimensions

¢ Wave equation in three dimensions:

19%p

2 = —_———

r'p v2 0t2

¢ Second derivatives:

a’p .
Frohe —kx p(%,t)

a’p R
a—yz = —ka, p(x, t)

a*p .
32 = ker(t)

a’p R
el —w?p(E,1t)

Waves in Two and Three Dimensions

* Wave equation in three dimensions:

.10
v2 9t?
- wZ -
—(kZ2+ k3 +kZ)p(E, 1) = —?P(X, t)

* Anyvalues of ky, ky, k, satisfy the equation,
provided that

w=v /k§+k§+k§=v|ﬁ|

* Ifky =k, = 0 then p(%,t) = pye'*x*~@1 put this
described a wave propagating in the +x direction.




Waves in Three Dimensions

P(E,¢) = poellFi=at)
¢ The vector, E, points in the direction of propagation
* The wavelengthis A = 27/ |k|
¢ How do we visualize this solution?

— Pressure is equal at all points Z such that k - # — wt = ¢
where ¢ is some constant phase.

— Let %' be some other point such thatk - #' — wt = ¢
— We can write ¥’ = % + % and this tells us that k - = 0.
—Kkandiiare perpendicular.

— All points in the plane perpendicular to k have the same
phase.
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Waves in Three Dimensions

¢ As usual, we are mainly
interested in the real
component:

Y@FE ) =A cos(l? X — wt)
¢ A wave propagating in the
opposite direction would be
described by
Y'(#t) = A'cos(l_c) X+ wt)
¢ The pointsin a plane with a

common phase is called the
“wavefront”.

Waves in Three Dimensions

YE L) =A cos(ﬁ X F wt)

¢ Sometimes we are free to pick a coordinate system in
which to describe the wave motion.

* If we choose the x-axis to be in the direction of
propagation, we get back the one-dimensional
solution we are familiar with:

W(7,t) = Acos(kx F wt)

e But in one-dimension we saw that any function that
satisfied f(x £ vt) was a solution to the wave
equation.

¢ What is the corresponding function in three
dimensions?




Waves in Three Dimensions

w=v /k§+k§+k§=v|ﬁ|

General solution to the wave equation are functions
that are twice-differentiable of the form:
Y& t) = Cyf (k-7 —vt) + Cog(k -7 + vt)
where k = k/|k|
Just like in the one-dimensional case, these do not
have to be harmonic functions.
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Example

* Isthe function (X, t) = (ax + bt + ¢)? a solution
to the wave equation?

* It should be because we can write it as
Y&, t) = (alx + vt) + ¢)?
where v = b/a which is of the form g(x + vt)
¢ We can check explicitly:

Y _ 9 _

E—Za(ax+bt+c) p = 2b(ax + bt +¢)
b _ 5 o2 Y _ 52
axz—Za axz_Zb

oty oty o 10%y
—_ —_ —_— 2 _ 2 2 p—
w7t oyt o = o ) 202 -252/v P v=b/a

Example

* Isthe function Y(X,t) = ax~2 + bt, where
a > 0,b > 0, a solution to the wave equation?

e lItistwice differentiable...
Pw_sa 0w _ g

ax2 ~ x* atz
¢ Butitis not a solution:
%y %y 9% 1% 6a
9x? ' 9y? " 972 v?ot? x*
— Only true if a = 0, which we already said was not the case.

¢ This is not a solution to the wave equation.




Waves in Two Dimensions

* Plane waves frequently provide a good description of

physical phenomena, but this is usually an

approximation:

describe this?

This looks like a wave... can the wave equation
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Waves in Two Dimensions

Rotational symmetry:

— Cartesian coordinates are not well suited for describing this

problem.

— Use polar coordinates instead.
— Motion should depend on r but should be independent of 8

Waves in Two Dimensions

* Wave equation: V2 =

* How do we write 7?2 in polar coordinates?

r= Ay

x =rcosf
y =rsin6 } 6 =tan™! (%)
* Derivatives:
ar x ar y
ox ay T
9 _ _ ¥y 9 _ x
ax r2 dy r2




Waves in Two Dimensions
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Waves in Two Dimensions

e Laplacian in polar coordinates:

2y 19y 109% 9%y
2y * ¥ 2T T
4 6r2+r6r+r2692+622

¢ When the geometry is does not depend on 6 or z:

0%y 1oy
2= —L 4 T
V= ar? + r or
1 a Y
“ror\' or
* Wave equation:
10/ oy 1 0%y
2. — ) = 1
le_rar(rar) v2 0t2

Waves in Two Dimensions

* Wave equation:
Vi =

2
¢ If we assume that % = —w?1 then the equation is:
%Y 10y w?
Iy T =0
or? * ror + v? v
¢ Change of variables: Letp =rw/v
w?d%) wildy w?
_2_1/2) + _2__1/) tz¢=0
v 65 vipdp v
0y 10y
5_Pz+/_3%+ Y(p) =0

ror\ or) " varr

11( aw) 1 0%y

10



Waves in Two Dimensions

e Bessel’s Equation:

0%y 10y
— - =0
357 +p6p +¥(p)
* Solutions are “Bessel functions”: J,(p), Y, (p)
o)
7'17 Yo(p)
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Bessel Functions?

?*YP  w? ?Y 10y w?

e tEY =0 a2 trar T ? =0
¢ Solutions: sin kx, cos kx ¢ Solutions: Jo(kr), Yy (kr)
* Graphs: ¢ Graphs:

* Series representation: * Series representation:
© o

— n 2n — n 2n
ost = 3 EDEDT S Do

(2n)!

n=0 n=0

22n(nl)2

Asymptotic Properties

¢ Atlarge values of r...
2 4 6m 81 10r  12m 14w

N

o
T[T

-
)

aﬁ“

Yo(kr) e
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Asymptotic Properties

When r is large, for example, kr > 1

Joller) ~ 2 oStk Z /%)
o(kr) ~ 2/

kr
Yo(kr) = {/2/m N

sin(kr — m/4)

g

15

TERLRT TR CTUUTE FOURT T ARE T VT
5 10 15 20 25 30 35 40 45 5

kr
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Energy

The energy carried by a wave is proportional to the
square of the amplitude.

cos kr

When (r, t)~A 5 the energy density decreases
as1/r

But the wave is spread out on a circle of
circumference 2nr

The total energy is constant, independent of r
At large r they look like plane waves:

@M
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