PURDUE D)eparTMENT OF Physics

2/21/2016

Physics 42200
Waves & Oscillations

Lecture 19 — French, Chapter 7

Spring 2016 Semester

Announcement:

There will be no class on Friday March 11,
There is a midterm on Thursday, March 10t:
Date: Thursday, March 10t

Time: 8:00—-10:00 pm

Room: MSEE B012?
Material: French, chapters 1-8

Reflection from Boundaries

e Consider a pulse propagating on a string, moving to
the right, towards a fixed end:

— v

’

¢ We learned that this can be represented as a linear

combination of normal modes:
[oe]

. mmx
y(x,t) = Z a, sin (T) cos wyt
n=1
¢ Since the problem is linear, we just need to analyze
one normal mode to see what happens next...




Reflection from a Boundary

¢ Considering just one normal mode:
(x,t) = a,, sin (ﬂ) COS wyt
InX,t) = an L n
¢ Trigonometric identity:
1

sina cosp = 3 [sin(a + B) + sin(a — B)]

¢ Re-write this as two travelling waves:
_Qpy . (MTX _mux
Ylx,t) = > [sm (T + wnt) + sin (T wnt)]
¢ At the end of the string, x = L, thisis:
A
yo(L, t) = iTn[sin(wnt) —sin(w,t)] =0
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Reflection from a Boundary

YL, 6) = £ [sin(wyt) — sinwn )] = 0

¢ The component of the wave that moves to the left
has a displacement that is equal and opposite to the
displacement of the incident wave.

Another way to see this:

* The function y(x, t) that describes the shape of the
string has two components that move in opposite
directions: y(x,t) = y; (x, t) + y,-(x, t)

¢ At the end of the string, the two components are
equal and opposite, which ensures that the
boundary condition y(L, t) = 0 is satisfied.

Reflection from a Boundary

b

* Wave equation for the potential difference between the
conductors along a transmission line:
0%V 1 9%v
0x? v ot?
¢ If the inner and outer conductor are shorted at x = L, then
the potential difference is zero.
V({Lt)=0
* Areflected pulse will propagate back towards the source with
opposite amplitude.




Reflection from a Boundary

S
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Reflection from a Boundary

I

¢ If the end of the transmission line is open, then the incident
pulse produces a voltage across the end:
V(L,t) =V, (t)
¢ This acts like a source for a wave propagating to the left.
¢ The reflected wave is not inverted

Reflection from a Boundary

S




Reflection from a Boundary

¢ So far we have considered just two cases:
— Reflection with inversion
— Reflection without inversion

e We can draw a graphical description of the incident
and reflected waves:

Incident and reflected pulses
do not overlap.

Slope = 1/v Trailing edge

T X Leading edge
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Reflection from a Boundary

¢ We can draw a graphical description of the incident
and reflected waves:

and reflected pulses
overlap briefly, making the
bump in the middle of the
measured voltage.

Trailing edge

t
] Slope = 1/v
x

Reflection from a Discontinuity

* Suppose a pulse propagates on a string with an abrupt
change in mass per unit length:

—>

* Velocity in each section:

v =T/ vy =T/l
¢ The function y(x, t) needs three components:
— Incident pulse: yi(x — vyt)

— Reflected pulse:  y.(x + vyt)
— Transmitted pulse: y,(x — v,t)
¢ Boundary conditions:
— Continuity of the function y(x, t) and its derivative.




Reflection from a Discontinuity

* Function for the wave in the string with p;:
y1(x,0) = yi(x — v1t) + 3 (x + v40)
* Function for the wave in string with u,:
y2(x, 1) = yp (x — vp1)
e Continuity at the boundary at x = 0:
yi(ol t) + YT(OI t) = )’t(o: t)
oy | 9y _ v
ax = ox  ox
* But there is a relation between the derivatives:
—letu=x—vt
6y_6y6_u_6_y day_aya_u_ ay

mThen e T auor ™ kT awar - Vou
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Reflection from a Discontinuity

ady 10y
ox  ~wvat
¢ Continuity at the boundaryat x = 0:
y:(0,6) +¥-(0,8) = ¥.(0,0)
ox ' 0x  ox
10y; 10y 1y,

vy 0t vy Ot v, Ot
* This can be written:
v,¥1(0,6) = v27(0,8) = vy i ()
* Now we can integrate with respect to t:
v,:(0,8) = v23,(0,8) = v1,(0, 1)

Reflection from a Discontinuity

y:(0,8) + y-(0,8) = ¥.(0,6)
1,¥:(0,8) — v29-(0,) = v,:(0, 1)
* Since we specified the initial function y;(x, t) we just
have two equations in two unknowns:
~VrtYe=Yi
V2Yr + V1Ye = V2

=1 1IN\ _( Vi e
(Vz 171) ()’t) - (VzJ’i) ‘Q&‘\)
v, — g W
Yr = Yi s
TN\ S

_ 2v,
Ve =i v, + vy




Reflection from a Discontinuity

* Reflection coefficient: p = (v, —v1)/(vy + v1)
* Transmission coefficient: T = 2v,/(v, + v;)

o Example: py > iy sov, < vy _
oo ¥
s aer®
v — —> V2

(This special case applies to the string, but not in general...)
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Example from Optics

¢ The index of refraction is defined as the ratio:
c
n=-—
v

* Speed of light in a dense medium: v =c¢/n
* Reflection coefficient:
V=V 1/np—1/ny L L)
Tvtv, 1/ny+1/n; ng+ny,
* Phase reversal when n, > nq, but not whenn; > n,
* Transmission coefficient:
2v, 2/n,

vy + v ny +n,

Reflection

Reflection with phase inversion:




Reflection from a Discontinuity

¢ Butbe careful! So far we have assumed that the tension on
both sides of the boundary are equal.

v =T/t vy =T/l

* In other situations this is not always the case:

v=Y/p v=K/p v =\yp/p
Y is Young’s modulus K is the bulk modulus p is the gas pressure

Y is a property of the gas.

* The restoring force can be produced by different physical
effects.

¢ Next, let’s look at how energy propagates in the medium...
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Energy Carried by a Pulse

* Potential energy is stored in an elastic string when it is stretched
into the shape of a pulse.

* Potential energy in one small interval of length: T
T 4
Ax

¢ Work needed to stretch the string in the vertical direction:
&y 1T
AW = Tf Ly =-— (ayy?
o Ax 2Ax
*  Work per unit length:

aw _ 1 (ayY’
Ax 2 \Ax

Energy Carried by a Pulse

¢ Work per unit length:
w1, (A_y)
Ax 2 Ax
* If the pulse maintains this shape but moves with velocity v
then this is the potential energy per unit length.

¢ Total potential energy is

2
1 ay

» Written in terms of linear density and velocity, T = uv?,

1 ay z
— 22
U—Zuv f(a;:) dx




Power Carried by a Wave

¢ A pulse has a finite amount of energy that moves with speed v
 Itis also convenient to describe harmonic waves

2mx
y(x,t) = Acos <T - wt)

which extend in space over many wavelengths

* First derivative:

, _ 2mA | Inx
y'(x) = 7 sin 1

* Energy in one wavelength (cycle):

1 2 ray\? 1 A/2mA\
r_2 2 — 2,20
U‘z””L(ax) dx Plad 2(/1)

1

= Eluszz
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Power Carried by a Wave

Energy per cycle:
1
U= El,uszz
Cycles passing a point in space per unit time: v/4

Average power carried by the wave:

1 1
P= z,uszzv = EZaozA2

Depends on the characteristic impedance of the medium
— Inthiscase, Z=puv =T/v

Also depends on the properties of the wave
— Amplitude and frequency

Impedance
For the string, the impedance is D\bei(f
Z=uw=T/v= \/T_pl Vg
In general, we can describe the “impedance” as the

ratio of the transverse “force”, divided by the “flow”
in the x-direction.

What is the impedance of a transmission line?
— Recallthatv = 1/VL'C', k = 2n/2 = w/v
— When V(x, t) = Vye i{*=@0) (this is the “force”)

o — L LV v €
DS T i i AL A L

ImpedanceisZ =V /I =,/L'/C’




Transmission and Reflection

* For the pulse propagating on the string we had:
p=W;—v)/(v2+v1)
T =2v,/(vy + v7)
* We want to write this in terms of the properties of the
medium, not just the velocity.
¢ |n this case,
Zy=T/vy =Ty Z;=T/vy =Tl

¢ General expressions:

_Z-7;
P=z,+2,
t:—
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Reflections in Elastic Media
[ soid | tgud [ G |

v=Y/p v=K/p v =\yp/p
Y is Young’s modulus K is the bulk modulus p is the gas pressure
Y~10'° N/m? K~10°N/m? v is a property of the gas.

For air, yp~1.42 X 105N /m?

* Consider reflection coefficients for a typical interface:
— A, vgir = 340m/s, Zgir = 417 \Jkg/s
— Water, Vyqeer = 1500 /S, Zyarer = 1.47 X 10° Jkg/s
* Reflection coefficient:
=2

p 7%, =-0.999% ~ -1
* Transmission coefficient:
=25 _ 60006
Tz

¢ How much power is transferred across the interface?

Transmitted Power

e Transmitted amplitude: A; =74
¢ Power carried by a wave:

1
pP= EZmZA2
* Incident power:
1
PL' = EZ].O)ZAZ

¢ Transmitted power:

1 22,73
—__ 2 2 271 242
P, = ZZZw () (VAL +Zz)2w A
P, 47%
P (Zy+25)?
¢ Reflected power: P. = P; — P; (conserves energy).




