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Physics 42200

Waves & Oscillations

Spring 2016 Semester
Matthew Jones

Lecture 19 – French, Chapter 7

Announcement:

There will be no class on Friday March 11th.

There is a midterm on Thursday, March 10th:

Date: Thursday, March 10th

Time: 8:00 – 10:00 pm

Room: MSEE B012?

Material: French, chapters 1-8

Reflection from Boundaries

• Consider a pulse propagating on a string, moving to 
the right, towards a fixed end:

• We learned that this can be represented as a linear 
combination of normal modes:

� �, � = ��� sin �
�
� cos���

�

���
• Since the problem is linear, we just need to analyze 

one normal mode to see what happens next…

�
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Reflection from a Boundary

• Considering just one normal mode:

�� �, � = �� sin �
�
� cos���

• Trigonometric identity:

sin � cos� = 1
2 sin � + � + sin � − �

• Re-write this as two travelling waves:

�� �, � = ��
2 sin �
�

� + ��� + sin �
�
� − ���

• At the end of the string, � = �, this is:

�� �, � = ±��
2 sin ��� − sin ��� = 0

Reflection from a Boundary

�� �, � = ±��
2 sin ��� − sin ��� = 0

• The component of the wave that moves to the left 
has a displacement that is equal and opposite to the 
displacement of the incident wave.

Another way to see this:

• The function � �, � that describes the shape of the 
string has two components that move in opposite 
directions: � �, � = �� �, � + � (�, �)

• At the end of the string, the two components are 
equal and opposite, which ensures that the 
boundary condition � �, � = 0 is satisfied.

Reflection from a Boundary

• Wave equation for the potential difference between the 

conductors along a transmission line:

#$%
#�$ = 1

�$
#$%
#�$

• If the inner and outer conductor are shorted at � = �, then 

the potential difference is zero.

% �, � = 0
• A reflected pulse will propagate back towards the source with 

opposite amplitude.

�
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Reflection from a Boundary

Reflection from a Boundary

• If the end of the transmission line is open, then the incident 

pulse produces a voltage across the end:

% �, � = %& �
• This acts like a source for a wave propagating to the left.

• The reflected wave is not inverted

�

Reflection from a Boundary
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Reflection from a Boundary

• So far we have considered just two cases:

– Reflection with inversion

– Reflection without inversion

• We can draw a graphical description of the incident 

and reflected waves:

�

�
Slope = 1/� Trailing edge

Leading edge

Incident and reflected pulses 

do not overlap.

Reflection from a Boundary

• We can draw a graphical description of the incident 

and reflected waves:

�

�
Slope = 1/�

Incident and reflected pulses 

overlap briefly, making the 

bump in the middle of the 

measured voltage.

Leading edge

Trailing edge

Reflection from a Discontinuity

• Suppose a pulse propagates on a string with an abrupt 
change in mass per unit length:

• Velocity in each section:

�� = (/)� �$ = (/)$
• The function �(�, �) needs three components:

– Incident pulse:         �� � − ���
– Reflected pulse:       � � + ���
– Transmitted pulse:  �*(� − �$�)

• Boundary conditions:

– Continuity of the function � �, � and its derivative.

��
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Reflection from a Discontinuity

• Function for the wave in the string with )�:

�� �, � = �� � − ��� + � � + ���
• Function for the wave in string with )$:

�$ �, � = �* � − �$�
• Continuity at the boundary at � = 0:

�� 0, � + � 0, � = �* 0, �
#��
#� + #� 

#� = #�*
#�

• But there is a relation between the derivatives:

– Let + = � − ��
– Then 

,-
,. =

,-
,/

,/
,. =

,-
,/ and  

,-
,* =

,-
,/ 	

,/
,* = −� ,-

,/

Reflection from a Discontinuity

#�
#� = ±1

�
#�
#�

• Continuity at the boundary at � = 0:

�� 0, � + � 0, � = �* 0, �
#��
#� + #� 

#� = #�*
#�

− 1
��

#��
#� + 1

��
#� 
#� = − 1

�$
#�*
#�

• This can be written:

�$��1 0, � − �$� 1 0, � = ���*1 �
• Now we can integrate with respect to �:

�$�� 0, � − �$� 0, � = ���*(0, �)

Reflection from a Discontinuity

�� 0, � + � 0, � = �* 0, �
�$�� 0, � − �$� 0, � = ���*(0, �)

• Since  we specified the initial function ��(�, �) we just 

have two equations in two unknowns:

−� + �* = ���$� + ���* = �$��−1 1
�$ ��

� �* = ���$��
� = �� �$ − ��

�$ + ��
�* = �� 2�$

�$ + ��
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Reflection from a Discontinuity

• Reflection coefficient:  2 = (�$ − ��)/(�$ + ��)
• Transmission coefficient:  3 = 2�$/(�$ + ��)
• Example: )$ > )� so �$ < ��

��

�� �$

(This special case applies to the string, but not in general…)

Example from Optics

• The index of refraction is defined as the ratio:

� = 6
�

• Speed of light in a dense medium:  � = 6/�
• Reflection coefficient:

2 = �$ − ��
�$ + �� =

1 �$⁄ − 1/��
1 �$⁄ + 1/�� = �� − �$

�� + �$
• Phase reversal when �$ > ��, but not when �� > �$
• Transmission coefficient:

3 = 2�$
�$ + �� =

2/�$
�� + �$

Reflection

Reflection with phase inversion:

Reflection without phase inversion:

� > 1

� > 1
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Reflection from a Discontinuity

• But be careful!  So far we have assumed that the tension on 

both sides of the boundary are equal.

�� = (/)� �$ = (/)$
• In other situations this is not always the case:

• The restoring force can be produced by different physical 

effects.

• Next, let’s look at how energy propagates in the medium…

Solid Liquid Gas

� = 8/2
8 is Young’s modulus

� = 9/2
9 is the bulk modulus

� = :;/2
; is the gas pressure

: is a property of the gas.

Energy Carried by a Pulse

• Potential energy is stored in an elastic string when it is stretched 
into the shape of a pulse.

• Potential energy in one small interval of length:

• Work needed to stretch the string in the vertical direction:

∆= = (> �
∆�

∆-

?
@� = 1

2
(
∆� 	 ∆� $

• Work per unit length:

∆=
∆� = 1

2 	(	
∆�
∆�

$

(

(
∆�

∆�

Energy Carried by a Pulse

• Work per unit length:

∆=
∆� = 1

2 	(	
∆�
∆�

$

• If the pulse maintains this shape but moves with velocity �
then this is the potential energy per unit length.

• Total potential energy is

A = 1
2(>

#�
#�

$
@�

• Written in terms of linear density and velocity, ( = )�$,

A = 1
2)�$> #�

#�
$
@�
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Power Carried by a Wave

• A pulse has a finite amount of energy that moves with speed �
• It is also convenient to describe harmonic waves

� �, � = � cos 2
�
B − ��

which extend in space over many wavelengths

• First derivative:

�1 � = −2
�
B sin 2
�B

• Energy in one wavelength (cycle): 

A1 = 1
2)�$>

#�
#�

$C

?
@� = 1

2 )�$
B
2

2
�
B

$

= 1
2 B)�$�$

Power Carried by a Wave

• Energy per cycle:

A′ = 1
2B)�$�$

• Cycles passing a point in space per unit time: �/B
• Average power carried by the wave:

E = 1
2)�$�$� = 1

2F�$�$

• Depends on the characteristic impedance of the medium

– In this case, F = )� = (/�
• Also depends on the properties of the wave

– Amplitude and frequency

Impedance
• For the string, the impedance is

F = )� = (/� = ()
• In general, we can describe the “impedance” as the 

ratio of the transverse “force”, divided by the “flow” 

in the x-direction.

• What is the impedance of a transmission line?

– Recall that � = 1 �1G1⁄ , H = 2
 B⁄ = �/�
– When % �, � = %?IJ�(K.JL*) (this is the “force”)

M �, � = − 1
N
#%
@� ≈ − 1

P��1
#%
@� = �

�1 % �, � = G1
�1 	%(�, �)

• Impedance is F = % M⁄ = �1/G1
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Transmission and Reflection

• For the pulse propagating on the string we had:

2 = (�$ − ��)/(�$ + ��)3 = 2�$/(�$ + ��)
• We want to write this in terms of the properties of the 

medium, not just the velocity.

• In this case,

F� = ( ��⁄ = ()� F$ = ( �$⁄ = ()$
• General expressions:

Q = RS − RT
RS + RT

U = SRS
RS + RT

Reflections in Elastic Media

• Consider reflection coefficients for a typical interface:

– Air, �V� = 340Y Z⁄ , FV� = 417	 H\/Z
– Water, �]V*^ = 1500	Y/Z, F]V*^ = 1.47 × 10b	 H\/Z

• Reflection coefficient:

2 = F� − F$F� + F$ = −0.9994 ≈ −1
• Transmission coefficient:

3 = 2F�
F� + F$ = 0.0006

• How much power is transferred across the interface?

Solid Liquid Gas

� = 8/2
8 is Young’s modulus

8~10�?	f/Y$

� = 9/2
9 is the bulk modulus

9~10gf/Y$

� = :;/2
; is the gas pressure

: is a property of the gas.

For air, :;~1.42 × 10hf/Y$

Transmitted Power

• Transmitted amplitude:     �* = 3�
• Power carried by a wave:

E = 1
2F�$�$

• Incident power:

E� = 1
2F��$�$

• Transmitted power:

E* = 1
2F$�$ 3� $ = 2F$F�$

F� + F$ $�$�$

E*
E� =

4F�$
F� + F$ $

• Reflected power: E = E� − E* (conserves energy).


